Machine learning approaches for mapping and predicting landslide-prone areas in São Sebastião (Southeast Brazil)

Enner Alcântara , Cheila Flávia Baião , Yasmim Carvalho Guimarães , José Roberto Mantovani , José Antonio Marengo
{"title":"Machine learning approaches for mapping and predicting landslide-prone areas in São Sebastião (Southeast Brazil)","authors":"Enner Alcântara ,&nbsp;Cheila Flávia Baião ,&nbsp;Yasmim Carvalho Guimarães ,&nbsp;José Roberto Mantovani ,&nbsp;José Antonio Marengo","doi":"10.1016/j.nhres.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs machine learning techniques to map and predict landslide-prone areas in São Sebastião, Brazil, a region susceptible to landslides due to its steep terrain and intense rainfall. We compared five algorithms: Random Forest, Gradient Boosting, Support Vector Machine, Artificial Neural Network, and k-Nearest Neighbors, using various environmental factors as inputs. The Gradient Boosting model performed best, achieving an AUC-ROC of 0.963 and an accuracy of 99.6%. Slope degree, soil moisture index, and relief dissection emerged as the most influential factors in predicting landslide susceptibility. Analysis of land use and land cover changes between 1985 and 2021 revealed significant increases in forest cover and urban areas, with implications for landslide risk distribution. The resulting susceptibility map shows predominantly low-risk areas with scattered high-risk zones, providing crucial information for targeted risk management. This research demonstrates the effectiveness of machine learning in landslide susceptibility mapping and offers valuable insights for disaster risk reduction and urban planning in coastal mountainous regions.</div></div>","PeriodicalId":100943,"journal":{"name":"Natural Hazards Research","volume":"5 2","pages":"Pages 247-261"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666592124000751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs machine learning techniques to map and predict landslide-prone areas in São Sebastião, Brazil, a region susceptible to landslides due to its steep terrain and intense rainfall. We compared five algorithms: Random Forest, Gradient Boosting, Support Vector Machine, Artificial Neural Network, and k-Nearest Neighbors, using various environmental factors as inputs. The Gradient Boosting model performed best, achieving an AUC-ROC of 0.963 and an accuracy of 99.6%. Slope degree, soil moisture index, and relief dissection emerged as the most influential factors in predicting landslide susceptibility. Analysis of land use and land cover changes between 1985 and 2021 revealed significant increases in forest cover and urban areas, with implications for landslide risk distribution. The resulting susceptibility map shows predominantly low-risk areas with scattered high-risk zones, providing crucial information for targeted risk management. This research demonstrates the effectiveness of machine learning in landslide susceptibility mapping and offers valuable insights for disaster risk reduction and urban planning in coastal mountainous regions.
o sebasti(巴西东南部)滑坡易发地区测绘和预测的机器学习方法
本研究采用机器学习技术来绘制和预测巴西 o sebasti地区的滑坡易发地区,该地区由于地形陡峭和强降雨而容易发生滑坡。我们比较了五种算法:随机森林、梯度增强、支持向量机、人工神经网络和k近邻,使用各种环境因素作为输入。梯度增强模型表现最好,AUC-ROC为0.963,准确率为99.6%。坡度、土壤水分指数和地形解剖是预测滑坡易感性的主要影响因素。对1985年至2021年间土地利用和土地覆盖变化的分析显示,森林覆盖和城市地区显著增加,这对滑坡风险分布产生了影响。由此得出的易感性图显示,低风险区为主,高风险区分散,为有针对性的风险管理提供了重要信息。该研究证明了机器学习在滑坡易感性测绘中的有效性,并为沿海山区的灾害风险降低和城市规划提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信