Machine learning-based classification of geological structures from magnetic anomaly data: Case study of Northern Nigeria basement complex

Ema Abraham, Ayatu Usman, Ifunanya Amano
{"title":"Machine learning-based classification of geological structures from magnetic anomaly data: Case study of Northern Nigeria basement complex","authors":"Ema Abraham,&nbsp;Ayatu Usman,&nbsp;Ifunanya Amano","doi":"10.1016/j.mlwa.2025.100678","DOIUrl":null,"url":null,"abstract":"<div><div>The geological terrain of Northern Nigeria presents a complex mineral resource landscape that requires systematic exploration. This study applies a machine learning framework to geomagnetic data to enhance the identification of subsurface mineralized structures. Through the integration of analytic signal processing with machine learning classifiers (Random Forest (RF) and Gradient Boosting (GB)), we analyze magnetic anomalies to predict subsurface geological features with a classification accuracy of 95.5%. The results identify mineral-rich zones across various depths, ranging from near-surface (280 m) to deep crustal levels (&gt; 2000 m), with key prospective areas including Het, Kagoro, and Durbi. These regions contain mineral deposits such as monazite, tantalite, columbite, tourmaline, beryl, and kaolin. The study achieves a Pearson correlation coefficient of 0.956 between predicted and observed subsurface structures, demonstrating the effectiveness of this approach in mineral exploration. The methodology not only validates known geological features but also reveals previously unrecognized mineral-rich structures, contributing to a more data-driven strategy for resource assessment in geologically complex regions.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100678"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The geological terrain of Northern Nigeria presents a complex mineral resource landscape that requires systematic exploration. This study applies a machine learning framework to geomagnetic data to enhance the identification of subsurface mineralized structures. Through the integration of analytic signal processing with machine learning classifiers (Random Forest (RF) and Gradient Boosting (GB)), we analyze magnetic anomalies to predict subsurface geological features with a classification accuracy of 95.5%. The results identify mineral-rich zones across various depths, ranging from near-surface (280 m) to deep crustal levels (> 2000 m), with key prospective areas including Het, Kagoro, and Durbi. These regions contain mineral deposits such as monazite, tantalite, columbite, tourmaline, beryl, and kaolin. The study achieves a Pearson correlation coefficient of 0.956 between predicted and observed subsurface structures, demonstrating the effectiveness of this approach in mineral exploration. The methodology not only validates known geological features but also reveals previously unrecognized mineral-rich structures, contributing to a more data-driven strategy for resource assessment in geologically complex regions.
基于磁异常数据的机器学习地质构造分类:以尼日利亚北部基底杂岩为例
尼日利亚北部的地质地形呈现出复杂的矿产资源景观,需要系统的勘探。本研究将机器学习框架应用于地磁数据,以增强对地下矿化结构的识别。通过将分析信号处理与机器学习分类器(Random Forest (RF)和Gradient Boosting (GB))相结合,分析磁异常预测地下地质特征,分类精度达到95.5%。结果确定了不同深度的富矿带,从近地表(280 m)到地壳深处(>;2000米),主要的潜在区域包括Het、Kagoro和Durbi。这些地区含有矿物矿床,如独居石、钽矿、柱长石、电气石、绿柱石和高岭土。预测与观测的地下构造Pearson相关系数为0.956,证明了该方法在矿产勘查中的有效性。该方法不仅验证了已知的地质特征,还揭示了以前未被识别的富含矿物质的构造,为地质复杂地区的资源评估提供了更多数据驱动的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信