Disentangling Dynamics: Advanced, Scalable and Explainable Imputation for Multivariate Time Series

IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shuai Liu;Xiucheng Li;Yile Chen;Yue Jiang;Gao Cong
{"title":"Disentangling Dynamics: Advanced, Scalable and Explainable Imputation for Multivariate Time Series","authors":"Shuai Liu;Xiucheng Li;Yile Chen;Yue Jiang;Gao Cong","doi":"10.1109/TKDE.2025.3558405","DOIUrl":null,"url":null,"abstract":"Missing values pose a formidable obstacle in multivariate time series analysis. Existing imputation methods rely on entangled representations that struggle to simultaneously capture multiple orthogonal time-series patterns, leading to suboptimal performance and limited interpretability. Meanwhile, requiring the entire data span as input renders these models impractical for long time series. To address these issues, we propose <inline-formula><tex-math>$\\mathsf {TIDER}$</tex-math></inline-formula> and its enhanced version, <inline-formula><tex-math>$\\mathsf {AdaTIDER}$</tex-math></inline-formula>. <inline-formula><tex-math>$\\mathsf {TIDER}$</tex-math></inline-formula> employs low-rank matrix factorization and disentangled temporal representations to model intricate dynamics like trend, seasonality, and local bias. However, <inline-formula><tex-math>$\\mathsf {TIDER}$</tex-math></inline-formula> is limited to single-period modeling and does not explicitly capture dependencies between channels. To overcome these limitations, <inline-formula><tex-math>$\\mathsf {AdaTIDER}$</tex-math></inline-formula> incorporates adaptive cross-channel dependency modeling and multi-period seasonality representations. These advancements enable it to dynamically capture variable relationships and complex multi-period patterns, significantly enhancing imputation accuracy and interpretability, while maintaining <inline-formula><tex-math>$\\mathsf {TIDER}$</tex-math></inline-formula>’s scalability. Extensive experiments on real-world datasets validate the superiority of our models in imputation accuracy, scalability, interpretability, and robustness.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 7","pages":"4010-4022"},"PeriodicalIF":10.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10949854/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Missing values pose a formidable obstacle in multivariate time series analysis. Existing imputation methods rely on entangled representations that struggle to simultaneously capture multiple orthogonal time-series patterns, leading to suboptimal performance and limited interpretability. Meanwhile, requiring the entire data span as input renders these models impractical for long time series. To address these issues, we propose $\mathsf {TIDER}$ and its enhanced version, $\mathsf {AdaTIDER}$. $\mathsf {TIDER}$ employs low-rank matrix factorization and disentangled temporal representations to model intricate dynamics like trend, seasonality, and local bias. However, $\mathsf {TIDER}$ is limited to single-period modeling and does not explicitly capture dependencies between channels. To overcome these limitations, $\mathsf {AdaTIDER}$ incorporates adaptive cross-channel dependency modeling and multi-period seasonality representations. These advancements enable it to dynamically capture variable relationships and complex multi-period patterns, significantly enhancing imputation accuracy and interpretability, while maintaining $\mathsf {TIDER}$’s scalability. Extensive experiments on real-world datasets validate the superiority of our models in imputation accuracy, scalability, interpretability, and robustness.
解纠缠动力学:多元时间序列的高级、可扩展和可解释的Imputation
在多元时间序列分析中,缺失值是一个巨大的障碍。现有的插值方法依赖于纠缠表示,难以同时捕获多个正交时间序列模式,导致性能不佳和可解释性有限。同时,要求整个数据跨度作为输入使得这些模型不适合长时间序列。为了解决这些问题,我们提出$\mathsf {TIDER}$及其增强版本$\mathsf {AdaTIDER}$。$\mathsf {TIDER}$采用低秩矩阵分解和解纠缠时间表示来模拟复杂的动态,如趋势,季节性和局部偏差。然而,$\mathsf {TIDER}$仅限于单周期建模,并且不显式地捕获通道之间的依赖关系。为了克服这些限制,$\mathsf {AdaTIDER}$结合了自适应跨通道依赖建模和多周期季节性表示。这些进步使其能够动态捕获变量关系和复杂的多周期模式,显著提高了imputation的准确性和可解释性,同时保持了$\mathsf {TIDER}$的可扩展性。在真实世界数据集上进行的大量实验验证了我们的模型在输入精度、可扩展性、可解释性和鲁棒性方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信