Workload Pattern Learning-Based Cloud Resource Management Models: Concepts and Meta-Analysis

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Deepika Saxena;Ashutosh Kumar Singh
{"title":"Workload Pattern Learning-Based Cloud Resource Management Models: Concepts and Meta-Analysis","authors":"Deepika Saxena;Ashutosh Kumar Singh","doi":"10.1109/TSUSC.2024.3456429","DOIUrl":null,"url":null,"abstract":"Workload pattern learning-based resource management is crucial for cloud computing environments for achieving higher performance, sustainability, fault-tolerance, and quality of service. The existing literature lacks a comprehensive discussion and meta-analysis of workload pattern learning centered cloud resource management. In this context, this paper presents a first comprehensive study about five pattern learning and analysis-driven techniques applied for achieving higher efficiency and performance during multi-constrained cloud resource management. The paper manifests utility and significance of workload pattern learning-based resource management as compared with traditional resource management. The five principle techniques are thoroughly discussed with coherent depiction of intended concept alongwith numerical illustration. The most prominent state-of-the-art models belonging to each technique are further distinguished based on distinct objectives conferring an extensive survey and comparison. Besides, conceptual and theoretical analysis, the leading models underlying the major resource management techniques are implemented on a common platform and thoroughly examined using real-world Google Cluster workload traces. Based on the all-inclusive study and performance evaluation, trade-off discussion among these techniques are capsuled to put forward imperative concluding remarks with concrete open issues and insightful future research directions.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 3","pages":"418-438"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669916/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Workload pattern learning-based resource management is crucial for cloud computing environments for achieving higher performance, sustainability, fault-tolerance, and quality of service. The existing literature lacks a comprehensive discussion and meta-analysis of workload pattern learning centered cloud resource management. In this context, this paper presents a first comprehensive study about five pattern learning and analysis-driven techniques applied for achieving higher efficiency and performance during multi-constrained cloud resource management. The paper manifests utility and significance of workload pattern learning-based resource management as compared with traditional resource management. The five principle techniques are thoroughly discussed with coherent depiction of intended concept alongwith numerical illustration. The most prominent state-of-the-art models belonging to each technique are further distinguished based on distinct objectives conferring an extensive survey and comparison. Besides, conceptual and theoretical analysis, the leading models underlying the major resource management techniques are implemented on a common platform and thoroughly examined using real-world Google Cluster workload traces. Based on the all-inclusive study and performance evaluation, trade-off discussion among these techniques are capsuled to put forward imperative concluding remarks with concrete open issues and insightful future research directions.
基于工作量模式学习的云资源管理模型:概念和元分析
基于工作负载模式学习的资源管理对于云计算环境实现更高的性能、可持续性、容错性和服务质量至关重要。现有文献缺乏以工作负载模式学习为中心的云资源管理的全面讨论和元分析。在此背景下,本文首次全面研究了五种模式学习和分析驱动技术,这些技术用于在多约束云资源管理期间实现更高的效率和性能。通过与传统资源管理的比较,体现了基于工作量模式学习的资源管理的实用性和意义。五个原则技术进行了深入的讨论与连贯的描述意图的概念以及数值说明。属于每种技术的最突出的最先进的模型将根据不同的目标进一步区分,并进行广泛的调查和比较。除了概念和理论分析之外,主要资源管理技术背后的主要模型是在一个公共平台上实现的,并使用真实的谷歌集群工作负载跟踪进行了彻底的检查。在全面研究和绩效评价的基础上,对这些技术进行权衡讨论,提出势在必行的结束语,提出具体的开放性问题和有见地的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信