Discovering Cliques in Attribute Graphs Based on Proportional Fairness

IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yongye Li;Renjie Sun;Chen Chen;Xiaoyang Wang;Ying Zhang;Wenjie Zhang
{"title":"Discovering Cliques in Attribute Graphs Based on Proportional Fairness","authors":"Yongye Li;Renjie Sun;Chen Chen;Xiaoyang Wang;Ying Zhang;Wenjie Zhang","doi":"10.1109/TKDE.2025.3559994","DOIUrl":null,"url":null,"abstract":"Community detection is a fundamental problem and has been extensively studied. With the abundance of information in real-world networks, the discovery of communities in attribute graphs is increasingly valuable. However, numerous previous models in attribute graphs neglect the fairness concept, which plays an important role in ensuring that graph analysis is not biased toward specific groups. In this paper, we propose a novel model, named proportional fair clique (PFC). Specifically, given an attribute graph <inline-formula><tex-math>$G=(V,E,A)$</tex-math></inline-formula>, an integer <inline-formula><tex-math>$k$</tex-math></inline-formula> and a threshold <inline-formula><tex-math>$\\lambda \\in [0,1/|A|]$</tex-math></inline-formula>, a subgraph <inline-formula><tex-math>$S$</tex-math></inline-formula> of <inline-formula><tex-math>$G$</tex-math></inline-formula> is a PFC if <inline-formula><tex-math>$(i)$</tex-math></inline-formula> <inline-formula><tex-math>$S$</tex-math></inline-formula> is a clique with size at least <inline-formula><tex-math>$k$</tex-math></inline-formula> and <inline-formula><tex-math>$(ii)$</tex-math></inline-formula> <inline-formula><tex-math>$|S_{a_{i}}|/|S| \\geq \\lambda$</tex-math></inline-formula> for each attribute <inline-formula><tex-math>$a_{i}$</tex-math></inline-formula> in <inline-formula><tex-math>$G$</tex-math></inline-formula>, where <inline-formula><tex-math>$S_{a_{i}}$</tex-math></inline-formula> is the node set in <inline-formula><tex-math>$S$</tex-math></inline-formula> associated with attribute <inline-formula><tex-math>$a_{i}$</tex-math></inline-formula>. We show that the problem of enumerating all the maximal proportional fair cliques (MPFC) is NP-hard. A reasonable baseline algorithm is first presented by extending the Bron-Kerbosch framework. To scale for large networks, we propose several optimization strategies to accelerate the computation. Finally, comprehensive experiments are conducted over 6 graphs to demonstrate the efficiency and effectiveness of the proposed techniques and model.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 7","pages":"4003-4009"},"PeriodicalIF":10.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10962332/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Community detection is a fundamental problem and has been extensively studied. With the abundance of information in real-world networks, the discovery of communities in attribute graphs is increasingly valuable. However, numerous previous models in attribute graphs neglect the fairness concept, which plays an important role in ensuring that graph analysis is not biased toward specific groups. In this paper, we propose a novel model, named proportional fair clique (PFC). Specifically, given an attribute graph $G=(V,E,A)$, an integer $k$ and a threshold $\lambda \in [0,1/|A|]$, a subgraph $S$ of $G$ is a PFC if $(i)$ $S$ is a clique with size at least $k$ and $(ii)$ $|S_{a_{i}}|/|S| \geq \lambda$ for each attribute $a_{i}$ in $G$, where $S_{a_{i}}$ is the node set in $S$ associated with attribute $a_{i}$. We show that the problem of enumerating all the maximal proportional fair cliques (MPFC) is NP-hard. A reasonable baseline algorithm is first presented by extending the Bron-Kerbosch framework. To scale for large networks, we propose several optimization strategies to accelerate the computation. Finally, comprehensive experiments are conducted over 6 graphs to demonstrate the efficiency and effectiveness of the proposed techniques and model.
基于比例公平的属性图中团的发现
社区检测是一个基本问题,已被广泛研究。随着现实世界网络中信息的丰富,在属性图中发现社区变得越来越有价值。然而,许多先前的属性图模型忽略了公平性概念,公平性在确保图分析不偏向特定群体方面起着重要作用。在本文中,我们提出了一个新的模型,称为比例公平集团(PFC)。具体来说,给定一个属性图$G=(V,E,A)$,一个整数$k$和一个阈值$\lambda \in [0,1/|A|]$, $G$的子图$S$是一个PFC,如果$(i)$$S$是$G$中每个属性$a_{i}$的大小至少为$k$和$(ii)$$|S_{a_{i}}|/|S| \geq \lambda$,其中$S_{a_{i}}$是$S$中与属性$a_{i}$相关联的节点集。我们证明了列举所有最大比例公平团(MPFC)的问题是np困难的。通过对brown - kerbosch框架的扩展,提出了一种合理的基线算法。为了扩展大型网络,我们提出了几种优化策略来加速计算。最后,通过6张图进行了综合实验,验证了所提出的技术和模型的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信