A crystal plasticity-based reversible phase transformation model for Ti49Zr20Hf15Al10Nb6 high-entropy alloy

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chuhao Liu, Xiaochuan Sun, Xiaodan Zhang, Shengyi Zhong, Yubin Wu, Peter K Liaw, Huamiao Wang, Zhihong Jia, Yinghong Peng
{"title":"A crystal plasticity-based reversible phase transformation model for Ti49Zr20Hf15Al10Nb6 high-entropy alloy","authors":"Chuhao Liu, Xiaochuan Sun, Xiaodan Zhang, Shengyi Zhong, Yubin Wu, Peter K Liaw, Huamiao Wang, Zhihong Jia, Yinghong Peng","doi":"10.1016/j.actamat.2025.121193","DOIUrl":null,"url":null,"abstract":"The high-entropy alloys (HEAs) primarily composed of elements such as Ti, Zr, Hf, and Nb generally exhibit a B2-type crystal structure, contributing to their enhanced strength. However, the limited ability of the B2 lattice structure to accommodate plastic deformation leads to poor plasticity in this type of alloys. The deformation-induced martensitic transformation (DIMT) occurring in the B2 lattice can effectively alleviate the poor plasticity associated with these alloys. Our work focuses on the previously reported Ti49Zr20Hf15Al10Nb6 high-entropy alloy with DIMT mechanism, employing an improved elastic visco-plastic self-consistent (EVPSC) model to predict and analyze the macro- and micro-mechanical responses during uniaxial tension and cyclic loading that includes loading, unloading, and reloading. The model results elucidate the stress-strain behavior and volume fraction evolution of the <em>β</em> parent phase and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B1;&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2033;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 1130.1 947.9\" width=\"2.625ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g><g is=\"true\" transform=\"translate(640,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use><use transform=\"scale(0.707)\" x=\"275\" xlink:href=\"#MJMAIN-2032\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">α</mi><mrow is=\"true\"><mo is=\"true\">″</mo></mrow></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">α</mi><mrow is=\"true\"><mo is=\"true\">″</mo></mrow></msup></math></script></span> martensite phase during tension and cyclic loading, while quantitatively assessing the contributions of transformation and dislocation mechanisms to plastic deformation. Additionally, it explores the influence of back stress—a topic that is rarely addressed—on the reverse process of martensitic transformation and recoverable strain in this high-entropy alloy at the microstructural level. This model serves as a theoretical analysis tool for HEAs that incorporate reversible phase transformation (RPT) mechanism, facilitating the understanding of the evolutionary processes governing mechanical behavior at the microstructural level and thereby guiding the enhancement of toughness in B2 lattice HEAs.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"247 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121193","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The high-entropy alloys (HEAs) primarily composed of elements such as Ti, Zr, Hf, and Nb generally exhibit a B2-type crystal structure, contributing to their enhanced strength. However, the limited ability of the B2 lattice structure to accommodate plastic deformation leads to poor plasticity in this type of alloys. The deformation-induced martensitic transformation (DIMT) occurring in the B2 lattice can effectively alleviate the poor plasticity associated with these alloys. Our work focuses on the previously reported Ti49Zr20Hf15Al10Nb6 high-entropy alloy with DIMT mechanism, employing an improved elastic visco-plastic self-consistent (EVPSC) model to predict and analyze the macro- and micro-mechanical responses during uniaxial tension and cyclic loading that includes loading, unloading, and reloading. The model results elucidate the stress-strain behavior and volume fraction evolution of the β parent phase and α martensite phase during tension and cyclic loading, while quantitatively assessing the contributions of transformation and dislocation mechanisms to plastic deformation. Additionally, it explores the influence of back stress—a topic that is rarely addressed—on the reverse process of martensitic transformation and recoverable strain in this high-entropy alloy at the microstructural level. This model serves as a theoretical analysis tool for HEAs that incorporate reversible phase transformation (RPT) mechanism, facilitating the understanding of the evolutionary processes governing mechanical behavior at the microstructural level and thereby guiding the enhancement of toughness in B2 lattice HEAs.

Abstract Image

基于晶体塑性的Ti49Zr20Hf15Al10Nb6高熵合金可逆相变模型
高熵合金(HEAs)主要由Ti、Zr、Hf和Nb等元素组成,通常呈现b2型晶体结构,有助于增强其强度。然而,B2晶格结构适应塑性变形的能力有限,导致这类合金的塑性较差。在B2晶格中发生的变形诱发马氏体相变(DIMT)可以有效地改善这些合金的塑性差。本研究以已有报道的具有DIMT机制的Ti49Zr20Hf15Al10Nb6高熵合金为研究对象,采用改进的弹粘塑性自一致(EVPSC)模型预测和分析了单轴拉伸和加载、卸载和再加载过程中的宏观和微观力学响应。模型结果阐明了拉伸和循环加载过程中β母相和α″α″马氏体相的应力-应变行为和体积分数演变,同时定量评估了相变和位错机制对塑性变形的贡献。此外,本文还在微观组织水平上探讨了背应力对这种高熵合金马氏体相变的逆向过程和可恢复应变的影响,这是一个很少被提及的话题。该模型可作为包含可逆相变(RPT)机制的HEAs的理论分析工具,有助于在微观结构水平上理解控制力学行为的演化过程,从而指导B2晶格HEAs的韧性增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信