Synergistic design of interfacial conditions and textured Pt electrodes for enhanced ferroelectricity in ZrO2 ultrathin films

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shu-Chih Chang , Hsiang-Chih Chan , Hsin-Yu Hsieh, Chin-Lung Kuo, Miin-Jang Chen, Jay Shieh
{"title":"Synergistic design of interfacial conditions and textured Pt electrodes for enhanced ferroelectricity in ZrO2 ultrathin films","authors":"Shu-Chih Chang ,&nbsp;Hsiang-Chih Chan ,&nbsp;Hsin-Yu Hsieh,&nbsp;Chin-Lung Kuo,&nbsp;Miin-Jang Chen,&nbsp;Jay Shieh","doi":"10.1016/j.actamat.2025.121215","DOIUrl":null,"url":null,"abstract":"<div><div>The synergistic effects of Pt electrode crystallographic orientation and a 1-nm HfO<sub>2</sub> interfacial layer on the ferroelectric behavior of 13-nm ZrO<sub>2</sub> ultrathin films were investigated. The introduction of the HfO<sub>2</sub> interfacial layer between the ZrO<sub>2</sub> ultrathin film and textured Pt electrode significantly influenced phase stabilization by easing compressive stress and favoring the ferroelectric <em>Pca</em>2<sub>1</sub> orthorhombic (O) phase over the <em>P</em>4<sub>2</sub>/<em>nmc</em> tetragonal (T) while still effectively suppressing the <em>P</em>2<sub>1</sub>/<em>c</em> monoclinic (M) phases. Quantitative analysis revealed that the O-phase, with a fully-relaxed unit cell volume of ∼134.9 Å<sup>3</sup>, was energetically favored under moderate compression down to 128.4 Å<sup>3</sup>, in contrast to the T-phase, which stabilized at smaller volumes (&lt;128.4 Å<sup>3</sup>). The enhanced ferroelectricity and dielectric performance of the ZrO<sub>2</sub> ultrathin film on the (200)-textured Pt electrode (compared to the (111)-textured Pt electrode) were attributed to the synergy of the HfO<sub>2</sub> interfacial layer and (200)-textured Pt, which provided controlled confinement and promoted a higher concentration of oxygen vacancies (V<sub>O</sub>), confirmed by elemental depth profiling from angle-resolved X-ray photoelectron spectroscopy and first-principles calculations. Theoretical insights revealed that V<sub>O</sub>​, particularly at fourfold-coordinated oxygen sites, stabilizes the ferroelectric O-phase. This study leveraged interfacial design and crystallographic orientation of Pt electrodes to optimize ferroelectricity in ZrO<sub>2</sub> ultrathin films, advancing applications in nanoelectronics and semiconductor devices.l</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121215"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425005026","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synergistic effects of Pt electrode crystallographic orientation and a 1-nm HfO2 interfacial layer on the ferroelectric behavior of 13-nm ZrO2 ultrathin films were investigated. The introduction of the HfO2 interfacial layer between the ZrO2 ultrathin film and textured Pt electrode significantly influenced phase stabilization by easing compressive stress and favoring the ferroelectric Pca21 orthorhombic (O) phase over the P42/nmc tetragonal (T) while still effectively suppressing the P21/c monoclinic (M) phases. Quantitative analysis revealed that the O-phase, with a fully-relaxed unit cell volume of ∼134.9 Å3, was energetically favored under moderate compression down to 128.4 Å3, in contrast to the T-phase, which stabilized at smaller volumes (<128.4 Å3). The enhanced ferroelectricity and dielectric performance of the ZrO2 ultrathin film on the (200)-textured Pt electrode (compared to the (111)-textured Pt electrode) were attributed to the synergy of the HfO2 interfacial layer and (200)-textured Pt, which provided controlled confinement and promoted a higher concentration of oxygen vacancies (VO), confirmed by elemental depth profiling from angle-resolved X-ray photoelectron spectroscopy and first-principles calculations. Theoretical insights revealed that VO​, particularly at fourfold-coordinated oxygen sites, stabilizes the ferroelectric O-phase. This study leveraged interfacial design and crystallographic orientation of Pt electrodes to optimize ferroelectricity in ZrO2 ultrathin films, advancing applications in nanoelectronics and semiconductor devices.l

Abstract Image

ZrO2超薄膜中增强铁电性的界面条件和织构Pt电极协同设计
研究了Pt电极晶体取向和1 nm HfO2界面层对13 nm ZrO2超薄膜铁电行为的协同效应。在ZrO2超薄膜和织体Pt电极之间引入HfO2界面层,显著影响了相的稳定性,减轻了压应力,有利于铁电Pca21正交(O)相而不是P42/nmc四方(T)相,同时仍然有效地抑制了P21/c单斜(M)相。定量分析显示,完全松弛的单位细胞体积为~ 134.9 Å3的o相,在适度压缩至128.4 Å3时能量更有利,而t相则稳定在较小的体积下(<128.4 Å3)。角分辨x射线光电子能谱和第一性原理计算的元素深度谱证实,(200)-织化Pt电极上ZrO2超薄膜的铁电性能和介电性能的增强是由于HfO2界面层和(200)-织化Pt的协同作用,提供了可控的约束并促进了更高浓度的氧空穴(VO)。理论见解表明,VO,特别是在四配位氧位点,稳定了铁电o相。本研究利用Pt电极的界面设计和晶体取向来优化ZrO2超薄膜中的铁电性,推进其在纳米电子和半导体器件中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信