Nanosecond Ferroelectric Switching of Intralayer Excitons in Bilayer 3R−MoS2 through Coulomb Engineering

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jing Liang, Yuan Xie, Dongyang Yang, Shangyi Guo, Kenji Watanabe, Takashi Taniguchi, Jerry I. Dadap, David Jones, Ziliang Ye
{"title":"Nanosecond Ferroelectric Switching of Intralayer Excitons in Bilayer 3R−MoS2 through Coulomb Engineering","authors":"Jing Liang, Yuan Xie, Dongyang Yang, Shangyi Guo, Kenji Watanabe, Takashi Taniguchi, Jerry I. Dadap, David Jones, Ziliang Ye","doi":"10.1103/physrevx.15.021081","DOIUrl":null,"url":null,"abstract":"High-speed, nonvolatile tunability is critical for advancing reconfigurable photonic devices used in neuromorphic information processing, sensing, and communication. Despite significant progress in developing phase-change and ferroelectric materials, achieving highly efficient, reversible, rapid switching of optical properties has remained a challenge. Recently, sliding ferroelectricity has been discovered in 2D semiconductors, which also host strong excitonic effects. Here, we demonstrate that these materials enable nanosecond ferroelectric switching in the complex refractive index, substantially modulating their linear optical responses. The maximum index modulation reaches about 4, resulting in a relative reflectance change exceeding 85%. Both on and off switching occur within 2.5 ns, with switching energy at femtojoule levels. The switching mechanism is driven by tuning the excitonic peak splitting of a rhombohedral molybdenum disulfide bilayer in an engineered Coulomb screening environment. This new switching mechanism establishes a new direction for developing high-speed, nonvolatile optical memories and highly efficient, compact reconfigurable photonic devices. Additionally, the demonstrated imaging technique offers a rapid method to characterize domains and domain walls in 2D semiconductors with rhombohedral stacking. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"35 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021081","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-speed, nonvolatile tunability is critical for advancing reconfigurable photonic devices used in neuromorphic information processing, sensing, and communication. Despite significant progress in developing phase-change and ferroelectric materials, achieving highly efficient, reversible, rapid switching of optical properties has remained a challenge. Recently, sliding ferroelectricity has been discovered in 2D semiconductors, which also host strong excitonic effects. Here, we demonstrate that these materials enable nanosecond ferroelectric switching in the complex refractive index, substantially modulating their linear optical responses. The maximum index modulation reaches about 4, resulting in a relative reflectance change exceeding 85%. Both on and off switching occur within 2.5 ns, with switching energy at femtojoule levels. The switching mechanism is driven by tuning the excitonic peak splitting of a rhombohedral molybdenum disulfide bilayer in an engineered Coulomb screening environment. This new switching mechanism establishes a new direction for developing high-speed, nonvolatile optical memories and highly efficient, compact reconfigurable photonic devices. Additionally, the demonstrated imaging technique offers a rapid method to characterize domains and domain walls in 2D semiconductors with rhombohedral stacking. Published by the American Physical Society 2025
利用库仑工程研究双层3R−MoS2层内激子的纳秒铁电开关
高速、非易失性可调性对于推进可重构光子器件在神经形态信息处理、传感和通信中的应用至关重要。尽管相变和铁电材料的发展取得了重大进展,但实现高效、可逆、快速的光学特性切换仍然是一个挑战。最近,在二维半导体中发现了滑动铁电性,它也具有强激子效应。在这里,我们证明了这些材料能够在复折射率下实现纳秒级铁电开关,从而大大调制了它们的线性光学响应。最大折射率调制达到4左右,导致相对反射率变化超过85%。开关在2.5 ns内发生,开关能量在飞焦耳水平。开关机制是通过在工程库仑筛选环境中调节二硫化钼双分子层的激子峰分裂来驱动的。这种新的开关机制为发展高速、非易失性光存储器和高效、紧凑、可重构光子器件开辟了新的方向。此外,所演示的成像技术提供了一种快速表征具有菱形堆叠的二维半导体畴和畴壁的方法。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信