Peter Michael, Zekun Hao, Serge Belongie, Abe Davis
{"title":"Noise-Coded Illumination for Forensic and Photometric Video Analysis","authors":"Peter Michael, Zekun Hao, Serge Belongie, Abe Davis","doi":"10.1145/3742892","DOIUrl":null,"url":null,"abstract":"The proliferation of advanced tools for manipulating video has led to an arms race, pitting those who wish to sow disinformation against those who want to detect and expose it. Unfortunately, time favors the ill-intentioned in this race, with fake videos growing increasingly difficult to distinguish from real ones. At the root of this trend is a fundamental advantage held by those manipulating media: equal access to a distribution of what we consider authentic (i.e., “natural”) video. In this paper, we show how coding very subtle, noise-like modulations into the illumination of a scene can help combat this advantage by creating an information asymmetry that favors verification. Our approach effectively adds a temporal watermark to any video recorded under coded illumination. However, rather than encoding a specific message, this watermark encodes an image of the unmanipulated scene as it would appear lit only by the coded illumination. We show that even when an adversary knows that our technique is being used, creating a plausible coded fake video amounts to solving a second, more difficult version of the original adversarial content creation problem at an information disadvantage. This is a promising avenue for protecting high-stakes settings like public events and interviews, where the content on display is a likely target for manipulation, and while the illumination can be controlled, the cameras capturing video cannot.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"456 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3742892","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation of advanced tools for manipulating video has led to an arms race, pitting those who wish to sow disinformation against those who want to detect and expose it. Unfortunately, time favors the ill-intentioned in this race, with fake videos growing increasingly difficult to distinguish from real ones. At the root of this trend is a fundamental advantage held by those manipulating media: equal access to a distribution of what we consider authentic (i.e., “natural”) video. In this paper, we show how coding very subtle, noise-like modulations into the illumination of a scene can help combat this advantage by creating an information asymmetry that favors verification. Our approach effectively adds a temporal watermark to any video recorded under coded illumination. However, rather than encoding a specific message, this watermark encodes an image of the unmanipulated scene as it would appear lit only by the coded illumination. We show that even when an adversary knows that our technique is being used, creating a plausible coded fake video amounts to solving a second, more difficult version of the original adversarial content creation problem at an information disadvantage. This is a promising avenue for protecting high-stakes settings like public events and interviews, where the content on display is a likely target for manipulation, and while the illumination can be controlled, the cameras capturing video cannot.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.