Alexander Benton, Jiageng Liu, Mathilde A. Poussin, Andrea Lang Goldgewicht, Madhara Udawela, Adham S. Bear, Nils Wellhausen, Beatriz M. Carreno, Pete M. Smith, Matthew D. Beasley, Ben R. Kiefel, Daniel J. Powell
{"title":"Mutant KRAS peptide targeted CAR-T cells engineered for cancer therapy","authors":"Alexander Benton, Jiageng Liu, Mathilde A. Poussin, Andrea Lang Goldgewicht, Madhara Udawela, Adham S. Bear, Nils Wellhausen, Beatriz M. Carreno, Pete M. Smith, Matthew D. Beasley, Ben R. Kiefel, Daniel J. Powell","doi":"10.1016/j.ccell.2025.05.006","DOIUrl":null,"url":null,"abstract":"Despite the success of chimeric antigen receptor (CAR)-T cell therapies in hematological malignancies, clinical success against solid tumors is limited due to low therapeutic efficacy or dose-limiting toxicity. Developing therapies that trigger potent, yet manageable, immune responses capable of eliminating highly heterogeneous and immunosuppressive tumor cell populations remains a key challenge. Here, we harness multiple genetic approaches to develop a CAR-T cell therapy targeting tumors. First, we screen binders targeting oncogenic KRAS G12V mutations presented by peptide-MHC complexes. Subsequently, we incorporate these neoantigen binders into CAR-T cells (mKRAS NeoCARs) and demonstrate their efficacy in xenograft models of metastatic lung, pancreatic, and renal cell cancer. Finally, we enhance the <em>in vivo</em> efficacy and safety profile of mKRAS NeoCARs via inducible secretion of IL-12 and T cell receptor deletion. Together, these screening and engineering processes provide a modular platform for expanding the therapeutic index of cellular immunotherapies that target cancer.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"12 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.05.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the success of chimeric antigen receptor (CAR)-T cell therapies in hematological malignancies, clinical success against solid tumors is limited due to low therapeutic efficacy or dose-limiting toxicity. Developing therapies that trigger potent, yet manageable, immune responses capable of eliminating highly heterogeneous and immunosuppressive tumor cell populations remains a key challenge. Here, we harness multiple genetic approaches to develop a CAR-T cell therapy targeting tumors. First, we screen binders targeting oncogenic KRAS G12V mutations presented by peptide-MHC complexes. Subsequently, we incorporate these neoantigen binders into CAR-T cells (mKRAS NeoCARs) and demonstrate their efficacy in xenograft models of metastatic lung, pancreatic, and renal cell cancer. Finally, we enhance the in vivo efficacy and safety profile of mKRAS NeoCARs via inducible secretion of IL-12 and T cell receptor deletion. Together, these screening and engineering processes provide a modular platform for expanding the therapeutic index of cellular immunotherapies that target cancer.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.