Digital health technologies in the accelerating medicines Partnership® Schizophrenia Program.

IF 4.1 Q2 PSYCHIATRY
Johanna T W Wigman, Ann Ee Ching, Yoonho Chung, Habiballah Rahimi Eichi, Erlend Lane, Carsten Langholm, Aditya Vaidyam, Andrew Jin Soo Byun, Anastasia Haidar, Jessica Hartmann, Angela Nunez, Dominic Dwyer, Adibah Amani Nasarudin, Owen Borders, Isabelle Scott, Zailyn Tamayo, Priya Matneja, Kang-Ik Cho, Jean Addington, Luis K Alameda, Celso Arango, Nicholas J K Breitborde, Matthew R Broome, Kristin S Cadenhead, Monica E Calkins, Eric Yu Hai Chen, Jimmy Choi, Philippe Conus, Cheryl M Corcoran, Barbara A Cornblatt, Covadonga M Diaz-Caneja, Lauren M Ellman, Paolo Fusar-Poli, Pablo A Gaspar, Carla Gerber, Louise Birkedal Glenthøj, Leslie E Horton, Christy Lai Ming Hui, Joseph Kambeitz, Lana Kambeitz-Ilankovic, Matcheri S Keshavan, Sung-Wan Kim, Nikolaos Koutsouleris, Kerstin Langbein, Daniel Mamah, Daniel H Mathalon, Vijay A Mittal, Merete Nordentoft, Godfrey D Pearlson, Jesus Perez, Diana O Perkins, Albert R Powers, Jack Rogers, Fred W Sabb, Jason Schiffman, Jai L Shah, Steven M Silverstein, Stefan Smesny, Walid Yassin, William S Stone, Gregory P Strauss, Judy L Thompson, Rachel Upthegrove, Swapna Verma, Jijun Wang, Daniel H Wolf, Phillip Wolff, Laura M Rowland, Simon D'Alfonso, Ofer Pasternak, Sylvain Bouix, Patrick D McGorry, Rene S Kahn, John M Kane, Carrie E Bearden, Scott W Woods, Martha E Shenton, Barnaby Nelson, Justin T Baker, John Torous
{"title":"Digital health technologies in the accelerating medicines Partnership® Schizophrenia Program.","authors":"Johanna T W Wigman, Ann Ee Ching, Yoonho Chung, Habiballah Rahimi Eichi, Erlend Lane, Carsten Langholm, Aditya Vaidyam, Andrew Jin Soo Byun, Anastasia Haidar, Jessica Hartmann, Angela Nunez, Dominic Dwyer, Adibah Amani Nasarudin, Owen Borders, Isabelle Scott, Zailyn Tamayo, Priya Matneja, Kang-Ik Cho, Jean Addington, Luis K Alameda, Celso Arango, Nicholas J K Breitborde, Matthew R Broome, Kristin S Cadenhead, Monica E Calkins, Eric Yu Hai Chen, Jimmy Choi, Philippe Conus, Cheryl M Corcoran, Barbara A Cornblatt, Covadonga M Diaz-Caneja, Lauren M Ellman, Paolo Fusar-Poli, Pablo A Gaspar, Carla Gerber, Louise Birkedal Glenthøj, Leslie E Horton, Christy Lai Ming Hui, Joseph Kambeitz, Lana Kambeitz-Ilankovic, Matcheri S Keshavan, Sung-Wan Kim, Nikolaos Koutsouleris, Kerstin Langbein, Daniel Mamah, Daniel H Mathalon, Vijay A Mittal, Merete Nordentoft, Godfrey D Pearlson, Jesus Perez, Diana O Perkins, Albert R Powers, Jack Rogers, Fred W Sabb, Jason Schiffman, Jai L Shah, Steven M Silverstein, Stefan Smesny, Walid Yassin, William S Stone, Gregory P Strauss, Judy L Thompson, Rachel Upthegrove, Swapna Verma, Jijun Wang, Daniel H Wolf, Phillip Wolff, Laura M Rowland, Simon D'Alfonso, Ofer Pasternak, Sylvain Bouix, Patrick D McGorry, Rene S Kahn, John M Kane, Carrie E Bearden, Scott W Woods, Martha E Shenton, Barnaby Nelson, Justin T Baker, John Torous","doi":"10.1038/s41537-025-00599-w","DOIUrl":null,"url":null,"abstract":"<p><p>Although meta-analytic studies have shown that 25-33% of those at Clinical High Risk (CHR) for psychosis transition to a first episode of psychosis within three years, less is known about estimating the risk of transition at an individual level. Digital phenotyping offers a novel approach to explore the nature of CHR and may help to improve personalized risk prediction. Specifically, digital data enable detailed mapping of experiences, moods and behaviors during longer periods of time (e.g., weeks, months) and offer more insight into patterns over time at the individual level across their routine daily life. However, while novel digital health technologies open up many new avenues of research, they also come with specific challenges, including replicability of results and the adherence of participants. This paper outlines the design of the digital component of the Accelerating Medicines Partnership® Schizophrenia Program (AMP SCZ) project, a large international collaborative project that follows individuals at CHR for psychosis over a period of two years. The digital component comprises one-year smartphone-based digital phenotyping and actigraphy. Smartphone-based digital phenotyping includes 30-item short daily self-report surveys and voice diaries as well as passive data capture (geolocation, on/off screen state, and accelerometer). Actigraphy data are collected via an Axivity wristwatch. The aim of this paper is to describe the design and the three goals of the digital measures used in AMP SCZ to: (i) better understand the symptoms, real-life experiences, and behaviors of those at CHR for psychosis, (ii) improve the prediction of transition to psychosis and other health outcomes in this population based on digital phenotyping and, (iii) serve as an example for replicable and ethical research across geographically diverse regions and cultures. Accordingly, we describe the rationale, protocol and implementation of these digital components of the AMP SCZ project. **Link to video interview: https://vimeo.com/1060935583 *.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"83"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00599-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Although meta-analytic studies have shown that 25-33% of those at Clinical High Risk (CHR) for psychosis transition to a first episode of psychosis within three years, less is known about estimating the risk of transition at an individual level. Digital phenotyping offers a novel approach to explore the nature of CHR and may help to improve personalized risk prediction. Specifically, digital data enable detailed mapping of experiences, moods and behaviors during longer periods of time (e.g., weeks, months) and offer more insight into patterns over time at the individual level across their routine daily life. However, while novel digital health technologies open up many new avenues of research, they also come with specific challenges, including replicability of results and the adherence of participants. This paper outlines the design of the digital component of the Accelerating Medicines Partnership® Schizophrenia Program (AMP SCZ) project, a large international collaborative project that follows individuals at CHR for psychosis over a period of two years. The digital component comprises one-year smartphone-based digital phenotyping and actigraphy. Smartphone-based digital phenotyping includes 30-item short daily self-report surveys and voice diaries as well as passive data capture (geolocation, on/off screen state, and accelerometer). Actigraphy data are collected via an Axivity wristwatch. The aim of this paper is to describe the design and the three goals of the digital measures used in AMP SCZ to: (i) better understand the symptoms, real-life experiences, and behaviors of those at CHR for psychosis, (ii) improve the prediction of transition to psychosis and other health outcomes in this population based on digital phenotyping and, (iii) serve as an example for replicable and ethical research across geographically diverse regions and cultures. Accordingly, we describe the rationale, protocol and implementation of these digital components of the AMP SCZ project. **Link to video interview: https://vimeo.com/1060935583 *.

Abstract Image

加速药物伙伴关系®精神分裂症计划中的数字健康技术。
虽然荟萃分析研究表明,25-33%的临床高危(CHR)精神病患者在三年内转变为首次精神病发作,但对个体水平转变风险的估计知之甚少。数字表型为探索CHR的本质提供了一种新的方法,并可能有助于提高个性化的风险预测。具体来说,数字数据可以详细绘制较长一段时间(例如,数周、数月)的经历、情绪和行为,并在日常生活的个人层面上提供更多关于时间模式的见解。然而,虽然新的数字卫生技术开辟了许多新的研究途径,但它们也带来了具体的挑战,包括结果的可复制性和参与者的依从性。本文概述了加速药物伙伴关系®精神分裂症计划(AMP SCZ)项目的数字组件的设计,该项目是一个大型国际合作项目,在两年的时间里跟踪CHR的精神病患者。数字组件包括为期一年的基于智能手机的数字表型和活动记录。基于智能手机的数字表型包括30项简短的每日自我报告调查和语音日记,以及被动数据捕获(地理位置、开/关屏幕状态和加速度计)。活动记录数据是通过Axivity腕表收集的。本文的目的是描述AMP SCZ中使用的数字测量的设计和三个目标:(i)更好地理解CHR中精神病患者的症状、现实生活经历和行为,(ii)基于数字表型改善该人群向精神病过渡和其他健康结果的预测,(iii)作为跨地理不同地区和文化的可复制和伦理研究的示例。因此,我们描述了AMP SCZ项目中这些数字组件的基本原理、协议和实现。**视频采访链接:https://vimeo.com/1060935583 *。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信