PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.

Hao Li, Baris Oguz, Gabriel Arenas, Xing Yao, Jiacheng Wang, Alison Pouch, Brett Byram, Nadav Schwartz, Ipek Oguz
{"title":"PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.","authors":"Hao Li, Baris Oguz, Gabriel Arenas, Xing Yao, Jiacheng Wang, Alison Pouch, Brett Byram, Nadav Schwartz, Ipek Oguz","doi":"10.1117/12.3047410","DOIUrl":null,"url":null,"abstract":"<p><p>Placenta volume measured from 3D ultrasound (3DUS) images is an important tool for tracking the growth trajectory and is associated with pregnancy outcomes. Manual segmentation is the gold standard, but it is time-consuming and subjective. Although fully automated deep learning algorithms perform well, they do not always yield high-quality results for each case. Interactive segmentation models could address this issue. However, there is limited work on interactive segmentation models for the placenta. Despite their segmentation accuracy, these methods may not be feasible for clinical use as they require relatively large computational power which may be especially prohibitive in low-resource environments, or on mobile devices. In this paper, we propose a lightweight interactive segmentation model aiming for clinical use to interactively segment the placenta from 3DUS images in real-time. The proposed model adopts the segmentation from our fully automated model for initialization and is designed in a human-in-the-loop manner to achieve iterative improvements. The Dice score and normalized surface Dice are used as evaluation metrics. The results show that our model can achieve superior performance in segmentation compared to state-of-the-art models while using significantly fewer parameters. Additionally, the proposed model is much faster for inference and robust to poor initial masks. The code is available at https://github.com/MedICL-VU/PRISM-placenta.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13406 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3047410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Placenta volume measured from 3D ultrasound (3DUS) images is an important tool for tracking the growth trajectory and is associated with pregnancy outcomes. Manual segmentation is the gold standard, but it is time-consuming and subjective. Although fully automated deep learning algorithms perform well, they do not always yield high-quality results for each case. Interactive segmentation models could address this issue. However, there is limited work on interactive segmentation models for the placenta. Despite their segmentation accuracy, these methods may not be feasible for clinical use as they require relatively large computational power which may be especially prohibitive in low-resource environments, or on mobile devices. In this paper, we propose a lightweight interactive segmentation model aiming for clinical use to interactively segment the placenta from 3DUS images in real-time. The proposed model adopts the segmentation from our fully automated model for initialization and is designed in a human-in-the-loop manner to achieve iterative improvements. The Dice score and normalized surface Dice are used as evaluation metrics. The results show that our model can achieve superior performance in segmentation compared to state-of-the-art models while using significantly fewer parameters. Additionally, the proposed model is much faster for inference and robust to poor initial masks. The code is available at https://github.com/MedICL-VU/PRISM-placenta.

PRISM Lite:用于超声交互式3D胎盘分割的轻量级模型。
通过3D超声(3DUS)图像测量胎盘体积是跟踪生长轨迹的重要工具,与妊娠结局有关。人工分割是黄金标准,但它耗时且主观。尽管全自动深度学习算法表现良好,但它们并不总是为每种情况产生高质量的结果。交互式分割模型可以解决这个问题。然而,关于胎盘的交互式分割模型的工作有限。尽管这些方法的分割精度很高,但它们可能不适合临床使用,因为它们需要相对较大的计算能力,这在低资源环境或移动设备上尤其令人望而却步。在本文中,我们提出了一种轻量级的交互式分割模型,旨在临床应用,从3DUS图像中实时交互式分割胎盘。提出的模型采用我们的全自动模型的分割进行初始化,并以人在循环的方式进行设计,以实现迭代改进。Dice得分和归一化表面Dice被用作评估指标。结果表明,与最先进的模型相比,我们的模型可以在使用更少的参数的情况下实现更好的分割性能。此外,该模型的推理速度更快,并且对较差的初始掩模具有鲁棒性。代码可在https://github.com/MedICL-VU/PRISM-placenta上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信