{"title":"Lysine Acetylation of Plant α-Tubulins: Scaling Up the Local Effect to Large System Transformations.","authors":"Alexey Rayevsky, Elijah Bulgakov, Rostyslav Blume, Dmytro Novozhylov, Mariia Stykhylias, Serhii Ozheredov, Pavlo Karpov, Yaroslav Blume","doi":"10.1002/prot.26846","DOIUrl":null,"url":null,"abstract":"<p><p>Cell migration and motility, cell division, biogenesis and renewal of cell and tissue integrity, and the assembly and retention of cell or tissue architecture, to name but a few, represent increasingly vital processes at the cellular and whole-body levels. These biological processes are closely connected with the major structural transformations that cytoskeletal proteins undergo due to numerous post-translational modifications, including acetylation, tyrosynation, polyglutamylation, etc. We collected all the information on tubulin acetylation and data on related cellular manifestations. This work expands upon our previous investigations into PTM-associated microtubule remodeling by incorporating K60, K163, and K326 into our analysis. Subsequently, we applied the refined protocol to examine the impact of acetylation on the most prevalent tubulin isoforms: TBA1, TBA2, and TBA3. Our analysis identified three distinct patterns on the α-tubulin surface where interactions with neighboring subunits were altered upon acetylation. These findings suggest that acetylation significantly influences the inter-subunit interactions within the microtubule polymer. To assess the likelihood of rearrangement at each of the three acetylation sites (K60, K163, K326), we conducted a series of simulations involving nine tubulin molecules (representing a microtubule lattice). These simulations aimed to quantify the degree of dissociation susceptibility upon acetylation at each of these specific lysine residues while focusing on residues that serve as substrates for HDAC6 deacetylation in plants, K60, K163, and K326. In this study, we have gathered all relevant evidence for the impact of different acetylation points on the assembly and lifespan of microtubule organelles, using A. thaliana tubulins as a model object.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26846","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell migration and motility, cell division, biogenesis and renewal of cell and tissue integrity, and the assembly and retention of cell or tissue architecture, to name but a few, represent increasingly vital processes at the cellular and whole-body levels. These biological processes are closely connected with the major structural transformations that cytoskeletal proteins undergo due to numerous post-translational modifications, including acetylation, tyrosynation, polyglutamylation, etc. We collected all the information on tubulin acetylation and data on related cellular manifestations. This work expands upon our previous investigations into PTM-associated microtubule remodeling by incorporating K60, K163, and K326 into our analysis. Subsequently, we applied the refined protocol to examine the impact of acetylation on the most prevalent tubulin isoforms: TBA1, TBA2, and TBA3. Our analysis identified three distinct patterns on the α-tubulin surface where interactions with neighboring subunits were altered upon acetylation. These findings suggest that acetylation significantly influences the inter-subunit interactions within the microtubule polymer. To assess the likelihood of rearrangement at each of the three acetylation sites (K60, K163, K326), we conducted a series of simulations involving nine tubulin molecules (representing a microtubule lattice). These simulations aimed to quantify the degree of dissociation susceptibility upon acetylation at each of these specific lysine residues while focusing on residues that serve as substrates for HDAC6 deacetylation in plants, K60, K163, and K326. In this study, we have gathered all relevant evidence for the impact of different acetylation points on the assembly and lifespan of microtubule organelles, using A. thaliana tubulins as a model object.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.