The future of spatial epidemiology in the AI era: enhancing machine learning approaches with explicit spatial structure.

IF 1 4区 医学 Q4 HEALTH CARE SCIENCES & SERVICES
Geospatial Health Pub Date : 2025-01-23 Epub Date: 2025-06-04 DOI:10.4081/gh.2025.1386
Nima Kianfar, Benn Sartorius, Colleen L Lau, Robert Bergquist, Behzad Kiani
{"title":"The future of spatial epidemiology in the AI era: enhancing machine learning approaches with explicit spatial structure.","authors":"Nima Kianfar, Benn Sartorius, Colleen L Lau, Robert Bergquist, Behzad Kiani","doi":"10.4081/gh.2025.1386","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial epidemiology, defined as the study of spatial patterns in disease burdens or health outcomes, aims to estimate disease risk or incidence by identifying geographical risk factors and populations at risk (Morrison et al., 2024). Research in spatial epidemiology relies on both conventional approaches and Machine- Learning (ML) algorithms to explore geographic patterns of diseases and identify influential factors (Pfeiffer & Stevens, 2015). Traditional spatial techniques, including spatial autocorrelation using global Moran's I, Geary's C (Amgalan et al., 2022), and Ripley's K Function (Kan et al., 2022), Local Indicators of Spatial Association (LISA) (Sansuk et al., 2023), hotspot analysis by Getis-Ord Gi* (Lun et al., 2022), spatial lag models (Rey & Franklin, 2022), and Geographically Weighted Regression (GWR) (Kiani et al., 2024) are designed to explicitly incorporate the spatial structure of data into spatial modelling, often referred to as spatially aware models (Reich et al., 2021). Beyond these models, several other spatially aware approaches that have been widely applied in epidemiological studies include but are not limited to Bayesian spatial models that account for spatial uncertainty in disease mapping, such as Bayesian Hierarchical models, Conditional Autoregressive (CAR), and Besage, York, and Mollie' (BYM) models (Louzada et al., 2021). Bayesian methods are statistically rigorous techniques that assume neighboring regions share similar values. Kulldorff's Spatial Scan Statistic is another traditional spatial technique that uses a moving circular window to extract significant disease clusters (Tango, 2021). Moreover, geostatistical models such as Kriging and Inverse Distance Weighting (IDW) allow for continuous spatial interpolation of health data (Nayak et al., 2021). [...].</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2025.1386","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial epidemiology, defined as the study of spatial patterns in disease burdens or health outcomes, aims to estimate disease risk or incidence by identifying geographical risk factors and populations at risk (Morrison et al., 2024). Research in spatial epidemiology relies on both conventional approaches and Machine- Learning (ML) algorithms to explore geographic patterns of diseases and identify influential factors (Pfeiffer & Stevens, 2015). Traditional spatial techniques, including spatial autocorrelation using global Moran's I, Geary's C (Amgalan et al., 2022), and Ripley's K Function (Kan et al., 2022), Local Indicators of Spatial Association (LISA) (Sansuk et al., 2023), hotspot analysis by Getis-Ord Gi* (Lun et al., 2022), spatial lag models (Rey & Franklin, 2022), and Geographically Weighted Regression (GWR) (Kiani et al., 2024) are designed to explicitly incorporate the spatial structure of data into spatial modelling, often referred to as spatially aware models (Reich et al., 2021). Beyond these models, several other spatially aware approaches that have been widely applied in epidemiological studies include but are not limited to Bayesian spatial models that account for spatial uncertainty in disease mapping, such as Bayesian Hierarchical models, Conditional Autoregressive (CAR), and Besage, York, and Mollie' (BYM) models (Louzada et al., 2021). Bayesian methods are statistically rigorous techniques that assume neighboring regions share similar values. Kulldorff's Spatial Scan Statistic is another traditional spatial technique that uses a moving circular window to extract significant disease clusters (Tango, 2021). Moreover, geostatistical models such as Kriging and Inverse Distance Weighting (IDW) allow for continuous spatial interpolation of health data (Nayak et al., 2021). [...].

人工智能时代空间流行病学的未来:增强具有明确空间结构的机器学习方法。
空间流行病学被定义为对疾病负担或健康结果的空间模式的研究,旨在通过确定地理风险因素和风险人群来估计疾病风险或发病率(Morrison et al., 2024)。空间流行病学的研究依赖于传统方法和机器学习(ML)算法来探索疾病的地理模式并确定影响因素(Pfeiffer & Stevens, 2015)。传统的空间技术,包括使用全局Moran's I、Geary's C (Amgalan等人,2022)和Ripley's K函数(Kan等人,2022)的空间自相关、空间关联的局部指标(LISA) (Sansuk等人,2023)、geis - ord Gi* (Lun等人,2022)的热点分析、空间滞后模型(Rey & Franklin, 2022)和地理加权回归(GWR) (Kiani等人,2024),旨在明确地将数据的空间结构纳入空间建模。通常称为空间感知模型(Reich et al., 2021)。除了这些模型之外,流行病学研究中广泛应用的其他几种空间意识方法包括但不限于考虑疾病制图空间不确定性的贝叶斯空间模型,如贝叶斯层次模型、条件自回归(CAR)和Besage、York和Mollie (BYM)模型(Louzada等人,2021)。贝叶斯方法是统计上严格的技术,它假设相邻区域具有相似的值。Kulldorff的空间扫描统计是另一种传统的空间技术,它使用移动的圆形窗口来提取重要的疾病集群(Tango, 2021)。此外,Kriging和逆距离加权(IDW)等地统计模型允许对健康数据进行连续的空间插值(Nayak等人,2021)。[…]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geospatial Health
Geospatial Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
2.40
自引率
11.80%
发文量
48
审稿时长
12 months
期刊介绍: The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信