Md Nurul Ahad Tawhid, Siuly Siuly, Enamul Kabir, Yan Li
{"title":"Advancing Alzheimer's disease detection: a novel convolutional neural network based framework leveraging EEG data and segment length analysis.","authors":"Md Nurul Ahad Tawhid, Siuly Siuly, Enamul Kabir, Yan Li","doi":"10.1186/s40708-025-00260-3","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects memory, thinking, and behavior, leading to dementia, a severe cognitive decline. While no cure currently exists, recent advancements in preventive drug trials and therapeutic management have increased interest in developing clinical algorithms for early detection and biomarker identification. Electroencephalography (EEG) is noninvasive, cost-effective, and has high temporal resolution, making it a promising tool for automated AD detection. However, conventional machine learning approaches often fall short in accurately detecting AD due to their limited architectures. We also need to investigate the impact of EEG signal segment length on classification accuracy. To address these issues, a deep learning-based framework is proposed to detect AD using EEG data, focusing on determining the optimal segment length for classification. This framework contains EEG data collection, pre-processing for noise removal, temporal segmentation, convolutional neural network (CNN) model training and classification, and finally, evaluation. We have tested different segment lengths to test the impact on AD detection. We have used both 10-fold and leave-one-out cross-validation techniques and obtained accuracy of 97.08% and 96.90%, respectively, on a publicly available dataset from AHEPA General University Hospital of Thessaloniki. We have also tested the generalizability of the proposed model by testing it to detect frontotemporal dementia and obtained better results than existing studies. Furthermore, we have validated our proposed CNN model using several ablation studies and layer-wise extracted feature visualization. This study will establish a pioneering direction for future researchers and technology experts in the field of neurodiseases.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"13"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00260-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects memory, thinking, and behavior, leading to dementia, a severe cognitive decline. While no cure currently exists, recent advancements in preventive drug trials and therapeutic management have increased interest in developing clinical algorithms for early detection and biomarker identification. Electroencephalography (EEG) is noninvasive, cost-effective, and has high temporal resolution, making it a promising tool for automated AD detection. However, conventional machine learning approaches often fall short in accurately detecting AD due to their limited architectures. We also need to investigate the impact of EEG signal segment length on classification accuracy. To address these issues, a deep learning-based framework is proposed to detect AD using EEG data, focusing on determining the optimal segment length for classification. This framework contains EEG data collection, pre-processing for noise removal, temporal segmentation, convolutional neural network (CNN) model training and classification, and finally, evaluation. We have tested different segment lengths to test the impact on AD detection. We have used both 10-fold and leave-one-out cross-validation techniques and obtained accuracy of 97.08% and 96.90%, respectively, on a publicly available dataset from AHEPA General University Hospital of Thessaloniki. We have also tested the generalizability of the proposed model by testing it to detect frontotemporal dementia and obtained better results than existing studies. Furthermore, we have validated our proposed CNN model using several ablation studies and layer-wise extracted feature visualization. This study will establish a pioneering direction for future researchers and technology experts in the field of neurodiseases.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing