Advancements and challenges of artificial intelligence in climate modeling for sustainable urban planning.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-05-20 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1517986
Teerachai Amnuaylojaroen
{"title":"Advancements and challenges of artificial intelligence in climate modeling for sustainable urban planning.","authors":"Teerachai Amnuaylojaroen","doi":"10.3389/frai.2025.1517986","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) is revolutionizing climate modeling by enhancing predictive accuracy, computational efficiency, and multi-source data integration, playing a crucial role in sustainable urban planning. This Mini Review examines recent advancements in machine learning (ML) and deep learning (DL) techniques that improve climate risk assessment, resource optimization, and infrastructure resilience. Despite these innovations, significant challenges persist, including data quality inconsistencies, model interpretability limitations, ethical concerns, and the scalability of AI models across diverse urban contexts. To bridge these gaps, this review highlights key research directions, emphasizing the development of interpretable AI models, robust data governance frameworks, and scalable AI-driven solutions that help climate adaptation. By addressing these challenges, AI-based climate modeling can provide actionable insights for policymakers, urban planners, and researchers fostering climate-resilient and sustainable urban environments.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1517986"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1517986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) is revolutionizing climate modeling by enhancing predictive accuracy, computational efficiency, and multi-source data integration, playing a crucial role in sustainable urban planning. This Mini Review examines recent advancements in machine learning (ML) and deep learning (DL) techniques that improve climate risk assessment, resource optimization, and infrastructure resilience. Despite these innovations, significant challenges persist, including data quality inconsistencies, model interpretability limitations, ethical concerns, and the scalability of AI models across diverse urban contexts. To bridge these gaps, this review highlights key research directions, emphasizing the development of interpretable AI models, robust data governance frameworks, and scalable AI-driven solutions that help climate adaptation. By addressing these challenges, AI-based climate modeling can provide actionable insights for policymakers, urban planners, and researchers fostering climate-resilient and sustainable urban environments.

人工智能在可持续城市规划气候建模中的进展与挑战。
人工智能(AI)通过提高预测精度、计算效率和多源数据集成,正在彻底改变气候建模,在可持续城市规划中发挥着至关重要的作用。本文介绍了机器学习(ML)和深度学习(DL)技术的最新进展,这些技术可以改善气候风险评估、资源优化和基础设施恢复能力。尽管有这些创新,但仍然存在重大挑战,包括数据质量不一致、模型可解释性限制、伦理问题以及人工智能模型在不同城市环境中的可扩展性。为了弥补这些差距,本综述强调了关键的研究方向,强调开发可解释的人工智能模型、强大的数据治理框架和可扩展的人工智能驱动的解决方案,以帮助适应气候变化。通过应对这些挑战,基于人工智能的气候建模可以为政策制定者、城市规划者和研究人员提供可操作的见解,以培养气候适应型和可持续的城市环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信