{"title":"Advancements and challenges of artificial intelligence in climate modeling for sustainable urban planning.","authors":"Teerachai Amnuaylojaroen","doi":"10.3389/frai.2025.1517986","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) is revolutionizing climate modeling by enhancing predictive accuracy, computational efficiency, and multi-source data integration, playing a crucial role in sustainable urban planning. This Mini Review examines recent advancements in machine learning (ML) and deep learning (DL) techniques that improve climate risk assessment, resource optimization, and infrastructure resilience. Despite these innovations, significant challenges persist, including data quality inconsistencies, model interpretability limitations, ethical concerns, and the scalability of AI models across diverse urban contexts. To bridge these gaps, this review highlights key research directions, emphasizing the development of interpretable AI models, robust data governance frameworks, and scalable AI-driven solutions that help climate adaptation. By addressing these challenges, AI-based climate modeling can provide actionable insights for policymakers, urban planners, and researchers fostering climate-resilient and sustainable urban environments.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1517986"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1517986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial Intelligence (AI) is revolutionizing climate modeling by enhancing predictive accuracy, computational efficiency, and multi-source data integration, playing a crucial role in sustainable urban planning. This Mini Review examines recent advancements in machine learning (ML) and deep learning (DL) techniques that improve climate risk assessment, resource optimization, and infrastructure resilience. Despite these innovations, significant challenges persist, including data quality inconsistencies, model interpretability limitations, ethical concerns, and the scalability of AI models across diverse urban contexts. To bridge these gaps, this review highlights key research directions, emphasizing the development of interpretable AI models, robust data governance frameworks, and scalable AI-driven solutions that help climate adaptation. By addressing these challenges, AI-based climate modeling can provide actionable insights for policymakers, urban planners, and researchers fostering climate-resilient and sustainable urban environments.