{"title":"Exploring Causal Effects of Hormone- and Radio-Treatments in an Observational Study of Breast Cancer Using Copula-Based Semi-Competing Risks Models.","authors":"Tonghui Yu, Mengjiao Peng, Yifan Cui, Elynn Chen, Chixiang Chen","doi":"10.1002/sim.70131","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer patients may experience relapse or death after surgery during the follow-up period, leading to dependent censoring of relapse. This phenomenon, known as semi-competing risk, imposes challenges in analyzing treatment effects on breast cancer and necessitates advanced statistical tools for unbiased analysis. Despite progress in estimation and inference within semi-competing risks regression, its application to causal inference is still in its early stages. This article aims to propose a frequentist and semi-parametric framework based on copula models that can facilitate valid causal inference, net quantity estimation and interpretation, and sensitivity analysis for unmeasured factors under right-censored semi-competing risks data. We also propose novel procedures to enhance parameter estimation and its applicability in practice. After that, we apply the proposed framework to a breast cancer study and detect the time-varying causal effects of hormone- and radio-treatments on patients' relapse and overall survival. Moreover, extensive numerical evaluations demonstrate the method's feasibility, highlighting minimal estimation bias and reliable statistical inference.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 13-14","pages":"e70131"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer patients may experience relapse or death after surgery during the follow-up period, leading to dependent censoring of relapse. This phenomenon, known as semi-competing risk, imposes challenges in analyzing treatment effects on breast cancer and necessitates advanced statistical tools for unbiased analysis. Despite progress in estimation and inference within semi-competing risks regression, its application to causal inference is still in its early stages. This article aims to propose a frequentist and semi-parametric framework based on copula models that can facilitate valid causal inference, net quantity estimation and interpretation, and sensitivity analysis for unmeasured factors under right-censored semi-competing risks data. We also propose novel procedures to enhance parameter estimation and its applicability in practice. After that, we apply the proposed framework to a breast cancer study and detect the time-varying causal effects of hormone- and radio-treatments on patients' relapse and overall survival. Moreover, extensive numerical evaluations demonstrate the method's feasibility, highlighting minimal estimation bias and reliable statistical inference.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.