Kihoon Nam, Harim Tavares Dos Santos, Frank M Maslow, Daniel J Davis, Tabitha Li Galloway, Laura M Dooley, Patrick T Tassone, Robert P Zitsch, Bryan G Trump, Venkata Yellepeddi, Olga J Baker
{"title":"Activation of Human FPR2 with AT-RvD1 Resolves Acute Sialadenitis in Vivo.","authors":"Kihoon Nam, Harim Tavares Dos Santos, Frank M Maslow, Daniel J Davis, Tabitha Li Galloway, Laura M Dooley, Patrick T Tassone, Robert P Zitsch, Bryan G Trump, Venkata Yellepeddi, Olga J Baker","doi":"10.1007/s10753-025-02320-6","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies demonstrated that activation of the mouse G protein-coupled formyl peptide receptor 2 (mFpr2) with aspirin-triggered resolvin D1 (AT-RvD1) blocks pro-inflammatory cytokine signaling while promoting salivary gland (SG) epithelial integrity both in vitro and in vivo. In addition, mice lacking Fpr2 display alterations of SG innate and adaptive immunity. Taken together, these results indicate that Fpr2 activation with AT-RvD1 restores saliva secretion and regulates SG immunity in mice. To demonstrate the value of AT-RvD1 for use in human SG, however, we need to extend the findings above in the direction of clinical use. To this end, the current study investigated whether treatment with AT-RvD1 reduces SG inflammation and restores saliva secretion in an acute sialadenitis mouse model expressing the human formyl peptide receptor 2 (hFPR2) protein. Results indicate that mice carrying the hFPR2 and treated with lipopolysaccharide (LPS) display acute sialadenitis-like features as shown by increased levels of proliferating inflammatory cells, loss of epithelial integrity and reduced saliva secretion. In contrast, when these mice are treated with AT-RvD1, the sialadenitis-like features are drastically reduced as evidenced by a significant decrease in proliferating inflammatory cells as well as restoration of saliva secretion to levels comparable to phosphate buffered saline (PBS)-treated healthy controls. Finally, changes observed in mice carrying the hFPR2 and treated with LPS and AT-RvD1 were comparable to those observed in wild-type mice carrying the mFpr2. Together, these results demonstrate that activation of hFPR2 with AT-RvD1 resolves acute sialadenitis in vivo.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02320-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies demonstrated that activation of the mouse G protein-coupled formyl peptide receptor 2 (mFpr2) with aspirin-triggered resolvin D1 (AT-RvD1) blocks pro-inflammatory cytokine signaling while promoting salivary gland (SG) epithelial integrity both in vitro and in vivo. In addition, mice lacking Fpr2 display alterations of SG innate and adaptive immunity. Taken together, these results indicate that Fpr2 activation with AT-RvD1 restores saliva secretion and regulates SG immunity in mice. To demonstrate the value of AT-RvD1 for use in human SG, however, we need to extend the findings above in the direction of clinical use. To this end, the current study investigated whether treatment with AT-RvD1 reduces SG inflammation and restores saliva secretion in an acute sialadenitis mouse model expressing the human formyl peptide receptor 2 (hFPR2) protein. Results indicate that mice carrying the hFPR2 and treated with lipopolysaccharide (LPS) display acute sialadenitis-like features as shown by increased levels of proliferating inflammatory cells, loss of epithelial integrity and reduced saliva secretion. In contrast, when these mice are treated with AT-RvD1, the sialadenitis-like features are drastically reduced as evidenced by a significant decrease in proliferating inflammatory cells as well as restoration of saliva secretion to levels comparable to phosphate buffered saline (PBS)-treated healthy controls. Finally, changes observed in mice carrying the hFPR2 and treated with LPS and AT-RvD1 were comparable to those observed in wild-type mice carrying the mFpr2. Together, these results demonstrate that activation of hFPR2 with AT-RvD1 resolves acute sialadenitis in vivo.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.