{"title":"Uses and Opportunities for Ethyl Methanesulfonate Mutagenesis in Maize.","authors":"Rajdeep S Khangura, Norman B Best, Brian P Dilkes","doi":"10.1101/pdb.top108504","DOIUrl":null,"url":null,"abstract":"<p><p>Creating mutations in maize has provided key foundational information for our mechanistic understanding of genetics, evolution, and even the role of chromosomes as units of inheritance. Chemical mutagenesis is used in biological research to create novel genetic variation. Ethyl methanesulfonate (EMS) is an alkylating agent and a highly potent and frequently used mutagen. EMS mutagenesis can be used to identify genes based on phenotypes induced by mutagenesis (forward genetics) and to validate the functions of genes by independently creating multiple mutant alleles in known genes (reverse genetics). Due to our ability to collect huge quantities of maize pollen and to easily apply pollen to the silks of maize ears to conduct pollination and achieve hundreds of fertilization events, pollen EMS mutagenesis is uniquely facile in maize. While pollen EMS mutagenesis is commonly performed, treatment of maize seeds with EMS is also highly effective, and can be used for certain research objectives that are difficult to achieve with pollen mutagenesis, such as recovering mutant sectors. The alkylation of guanine residues by EMS primarily results in G > A or C > T transitions in the DNA, making the molecular profiling of mutations caused by EMS easy, with an extremely low false positive rate. EMS is hydrophilic, has a moderate half-life in water, and is sensitive to light and high temperatures. With appropriate precautions in research settings, EMS can be relatively safe to handle. Here, we provide an introduction to chemical mutagenesis via EMS, including some history on its use in maize and the considerations for the effective and safe design of mutagenesis experiments with EMS in maize.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top108504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Creating mutations in maize has provided key foundational information for our mechanistic understanding of genetics, evolution, and even the role of chromosomes as units of inheritance. Chemical mutagenesis is used in biological research to create novel genetic variation. Ethyl methanesulfonate (EMS) is an alkylating agent and a highly potent and frequently used mutagen. EMS mutagenesis can be used to identify genes based on phenotypes induced by mutagenesis (forward genetics) and to validate the functions of genes by independently creating multiple mutant alleles in known genes (reverse genetics). Due to our ability to collect huge quantities of maize pollen and to easily apply pollen to the silks of maize ears to conduct pollination and achieve hundreds of fertilization events, pollen EMS mutagenesis is uniquely facile in maize. While pollen EMS mutagenesis is commonly performed, treatment of maize seeds with EMS is also highly effective, and can be used for certain research objectives that are difficult to achieve with pollen mutagenesis, such as recovering mutant sectors. The alkylation of guanine residues by EMS primarily results in G > A or C > T transitions in the DNA, making the molecular profiling of mutations caused by EMS easy, with an extremely low false positive rate. EMS is hydrophilic, has a moderate half-life in water, and is sensitive to light and high temperatures. With appropriate precautions in research settings, EMS can be relatively safe to handle. Here, we provide an introduction to chemical mutagenesis via EMS, including some history on its use in maize and the considerations for the effective and safe design of mutagenesis experiments with EMS in maize.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.