Ethyl Methanesulfonate Treatment of Maize Seed for Recovery of Vegetative Mutant Sectors and Segregating Germinal Mutations.

Rajdeep S Khangura, Norman B Best, Brian P Dilkes
{"title":"Ethyl Methanesulfonate Treatment of Maize Seed for Recovery of Vegetative Mutant Sectors and Segregating Germinal Mutations.","authors":"Rajdeep S Khangura, Norman B Best, Brian P Dilkes","doi":"10.1101/pdb.prot108650","DOIUrl":null,"url":null,"abstract":"<p><p>Seed mutagenesis using alkylating chemical agents such as ethyl methanesulfonate (EMS) can generate somatic and germinal mutations in many plant species. In monoecious plants like maize, the sperm- and egg-producing reproductive germlines are derived from distinct cell lineages in the embryo. This separation results in independent mutations inherited via the egg and sperm lineages and prevents the recovery of recessive mutant phenotypes in diploid progeny after the first round of self-pollination. Thus, two generations of self-pollination are required to screen for recessive mutations when conducting seed mutagenesis. The additional time and manual self-pollination make this approach laborious. However, a high mutation rate and the ability to screen for somatic sectors in heterozygous mutant plants and other defined genetic backgrounds make seed mutagenesis an effective but underutilized mutagenesis tool for maize research. This protocol provides the directions and optimization steps to perform effective seed mutagenesis in maize. A high frequency of somatic mutations from seed mutagenesis can be achieved, but comes at the expense of poor and disordered growth, failure to form reproductive structures, and low or no seed production at high EMS concentrations or long contact times. In experiments where germinal mutations are a goal, an optimum dose of EMS is required in the first generation. Maize genetic backgrounds vary in their sensitivity to EMS, requiring some pilot testing in new genetic backgrounds. Researchers using this protocol can carry out seed mutagenesis safely and effectively to develop libraries of mutants or alleles for various experiments.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seed mutagenesis using alkylating chemical agents such as ethyl methanesulfonate (EMS) can generate somatic and germinal mutations in many plant species. In monoecious plants like maize, the sperm- and egg-producing reproductive germlines are derived from distinct cell lineages in the embryo. This separation results in independent mutations inherited via the egg and sperm lineages and prevents the recovery of recessive mutant phenotypes in diploid progeny after the first round of self-pollination. Thus, two generations of self-pollination are required to screen for recessive mutations when conducting seed mutagenesis. The additional time and manual self-pollination make this approach laborious. However, a high mutation rate and the ability to screen for somatic sectors in heterozygous mutant plants and other defined genetic backgrounds make seed mutagenesis an effective but underutilized mutagenesis tool for maize research. This protocol provides the directions and optimization steps to perform effective seed mutagenesis in maize. A high frequency of somatic mutations from seed mutagenesis can be achieved, but comes at the expense of poor and disordered growth, failure to form reproductive structures, and low or no seed production at high EMS concentrations or long contact times. In experiments where germinal mutations are a goal, an optimum dose of EMS is required in the first generation. Maize genetic backgrounds vary in their sensitivity to EMS, requiring some pilot testing in new genetic backgrounds. Researchers using this protocol can carry out seed mutagenesis safely and effectively to develop libraries of mutants or alleles for various experiments.

用甲基磺酸乙酯处理玉米种子恢复营养突变区段和分离萌发突变。
利用烷基化化学剂如甲基磺酸乙酯(EMS)进行种子诱变可以在许多植物物种中产生体细胞和生发突变。在像玉米这样的雌雄同株植物中,产生精子和卵子的生殖系来源于胚胎中不同的细胞系。这种分离导致通过卵子和精子谱系遗传的独立突变,并防止在第一轮自花授粉后二倍体后代中隐性突变表型的恢复。因此,在进行种子诱变时,需要两代自花授粉来筛选隐性突变。额外的时间和人工自花授粉使得这种方法很费力。然而,高突变率和筛选杂合突变植物体细胞部门的能力以及其他确定的遗传背景使种子诱变成为玉米研究中有效但未充分利用的诱变工具。该方案为实施有效的玉米种子诱变提供了方向和优化步骤。通过种子诱变可以实现高频率的体细胞突变,但代价是生长不良和紊乱,不能形成生殖结构,在高EMS浓度或长时间接触下产生低或不产生种子。在以生发突变为目标的实验中,需要在第一代中使用最佳剂量的EMS。玉米遗传背景对EMS的敏感性各不相同,需要在新的遗传背景中进行一些试点试验。利用该方案,研究人员可以安全有效地进行种子诱变,为各种实验建立突变体或等位基因文库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信