Ethyl Methanesulfonate Treatment of Maize Pollen for Development of Segregating Mutant Populations or Targeted Mutagenesis.

Rajdeep S Khangura, Norman B Best, Brian P Dilkes
{"title":"Ethyl Methanesulfonate Treatment of Maize Pollen for Development of Segregating Mutant Populations or Targeted Mutagenesis.","authors":"Rajdeep S Khangura, Norman B Best, Brian P Dilkes","doi":"10.1101/pdb.prot108651","DOIUrl":null,"url":null,"abstract":"<p><p>In maize, abundant pollen production and easy controlled pollination permit the direct mutagenesis of pollen to produce populations of independent mutant lines. Pollen can be treated with alkylating agents, such as ethyl methanesulfonate (EMS), to induce point mutations. The ease of applying and decontaminating this mutagen after the mutagenesis application and the advantages provided by the mutation spectra for subsequent bioinformatic analysis make EMS an attractive mutagen. We provide a maize pollen mutagenesis protocol with a list of critical supplies, a step-by-step procedure, and troubleshooting tips. Pollen is freshly collected and suspended in an emulsion of EMS and paraffin oil. The slurry of pollen, oil, and EMS is then directly placed on prepared maize silks to perform pollinations. Mutations result during embryogenesis due to replication-dependent mispairing at alkylated residues contributed by sperm nuclei. Thus, each seed bears an independent set of mutations. These progenies can be analyzed directly, as is the case in targeted mutagenesis experiments or the exploration of dominant genetic variation. Alternatively, the progenies of self-pollinated plants can be screened in the next generation to discover novel recessive mutations. In addition to the dose of EMS and contact time, the genetic background of maize can significantly influence outcomes, and some optimization of dose and contact time may be required for a genetic background and specific use case. Although we outline good practices for safe handling of EMS and waste, researchers should consult their local safety officers to ensure safe handling, decontamination, and disposal of EMS, which is toxic.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In maize, abundant pollen production and easy controlled pollination permit the direct mutagenesis of pollen to produce populations of independent mutant lines. Pollen can be treated with alkylating agents, such as ethyl methanesulfonate (EMS), to induce point mutations. The ease of applying and decontaminating this mutagen after the mutagenesis application and the advantages provided by the mutation spectra for subsequent bioinformatic analysis make EMS an attractive mutagen. We provide a maize pollen mutagenesis protocol with a list of critical supplies, a step-by-step procedure, and troubleshooting tips. Pollen is freshly collected and suspended in an emulsion of EMS and paraffin oil. The slurry of pollen, oil, and EMS is then directly placed on prepared maize silks to perform pollinations. Mutations result during embryogenesis due to replication-dependent mispairing at alkylated residues contributed by sperm nuclei. Thus, each seed bears an independent set of mutations. These progenies can be analyzed directly, as is the case in targeted mutagenesis experiments or the exploration of dominant genetic variation. Alternatively, the progenies of self-pollinated plants can be screened in the next generation to discover novel recessive mutations. In addition to the dose of EMS and contact time, the genetic background of maize can significantly influence outcomes, and some optimization of dose and contact time may be required for a genetic background and specific use case. Although we outline good practices for safe handling of EMS and waste, researchers should consult their local safety officers to ensure safe handling, decontamination, and disposal of EMS, which is toxic.

玉米花粉甲基磺酸乙酯处理对分离突变群体发育或定向诱变的影响。
在玉米中,丰富的花粉产量和易于控制的授粉使花粉直接诱变产生独立突变系群体成为可能。花粉可以用烷基化剂处理,如甲基磺酸乙酯(EMS),以诱导点突变。该诱变剂在诱变后易于应用和去污,以及突变谱为后续生物信息学分析提供的优势使EMS成为一种有吸引力的诱变剂。我们提供了一个玉米花粉诱变协议与关键物资的清单,一步一步的程序,和故障排除提示。新鲜采集的花粉悬浮在EMS和石蜡油的乳液中。然后将花粉、油和EMS的浆液直接放在制备好的玉米丝上进行授粉。在胚胎发生过程中,由于精子核贡献的烷基化残基的复制依赖性错配而导致突变。因此,每个种子都有一组独立的突变。这些后代可以直接分析,就像在靶向诱变实验或显性遗传变异的探索中一样。或者,自花授粉植物的后代可以在下一代中筛选,以发现新的隐性突变。除了EMS的剂量和接触时间外,玉米的遗传背景也会显著影响结果,可能需要针对遗传背景和特定用例对剂量和接触时间进行一些优化。虽然我们概述了安全处理EMS和废物的良好做法,但研究人员应咨询当地的安全官员,以确保安全处理、净化和处置有毒的EMS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信