The wonders of colored noise in a climate model.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0275848
Dmitri V Alexandrov, Irina A Bashkirtseva, Lev B Ryashko
{"title":"The wonders of colored noise in a climate model.","authors":"Dmitri V Alexandrov, Irina A Bashkirtseva, Lev B Ryashko","doi":"10.1063/5.0275848","DOIUrl":null,"url":null,"abstract":"<p><p>The problem of identifying possible dynamic mechanisms causing a global climate change is considered. This problem is investigated on the basis of a conceptual mathematical model describing the dynamic interaction of a sea ice latitude and bulk ocean temperature in the presence of parametric random fluctuations given by colored noise. It is shown how, under the influence of random perturbations, the equilibrium modes of the initial deterministic model are transformed into large-amplitude oscillatory modes. The dependence of these stochastic effects on the temporal correlation characteristics of the colored noises is investigated in detail. In this study, along with direct numerical simulations of random solutions, a new mathematical technique of stochastic sensitivity analysis of systems with colored noise and the confidence ellipses method is effectively used. The zone of the most active colored noise causing resonance phenomena has been identified.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0275848","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of identifying possible dynamic mechanisms causing a global climate change is considered. This problem is investigated on the basis of a conceptual mathematical model describing the dynamic interaction of a sea ice latitude and bulk ocean temperature in the presence of parametric random fluctuations given by colored noise. It is shown how, under the influence of random perturbations, the equilibrium modes of the initial deterministic model are transformed into large-amplitude oscillatory modes. The dependence of these stochastic effects on the temporal correlation characteristics of the colored noises is investigated in detail. In this study, along with direct numerical simulations of random solutions, a new mathematical technique of stochastic sensitivity analysis of systems with colored noise and the confidence ellipses method is effectively used. The zone of the most active colored noise causing resonance phenomena has been identified.

气候模型中彩色噪音的奇迹。
研究了确定引起全球气候变化的可能动力机制的问题。在有色噪声参数随机波动的情况下,建立了海冰纬度与海洋整体温度动态相互作用的概念数学模型,研究了这一问题。结果表明,在随机扰动的影响下,初始确定性模型的平衡模态转化为大振幅振荡模态。详细研究了这些随机效应对彩色噪声时间相关特性的依赖性。本研究在直接数值模拟随机解的基础上,有效地应用了有色噪声系统随机灵敏度分析的新数学技术和置信椭圆法。确定了引起共振现象的有色噪声最活跃的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信