Learning topological horseshoes in time series via deep neural networks.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0270132
Xiao-Song Yang, Junfeng Cheng
{"title":"Learning topological horseshoes in time series via deep neural networks.","authors":"Xiao-Song Yang, Junfeng Cheng","doi":"10.1063/5.0270132","DOIUrl":null,"url":null,"abstract":"<p><p>Time-series analysis plays a crucial role in understanding the dynamics of real-world systems across various scientific and engineering disciplines. We in this paper propose a novel approach to identifying chaotic dynamics by a geometric method based on deep learning. Specifically, we construct a map from the observed time-series data and seek the existence of a topological horseshoe in the map, which indicates chaotic behavior. We demonstrate the effectiveness of our method by numerical experiments on the Hénon map, the Lorenz system, and the Duffing system. The results show that the topological horseshoe theory combined with deep neural works provides a valuable tool for detection of chaos in complex nonlinear systems from time series.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0270132","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Time-series analysis plays a crucial role in understanding the dynamics of real-world systems across various scientific and engineering disciplines. We in this paper propose a novel approach to identifying chaotic dynamics by a geometric method based on deep learning. Specifically, we construct a map from the observed time-series data and seek the existence of a topological horseshoe in the map, which indicates chaotic behavior. We demonstrate the effectiveness of our method by numerical experiments on the Hénon map, the Lorenz system, and the Duffing system. The results show that the topological horseshoe theory combined with deep neural works provides a valuable tool for detection of chaos in complex nonlinear systems from time series.

通过深度神经网络在时间序列中学习拓扑马蹄铁。
时间序列分析在理解各种科学和工程学科的现实世界系统的动态方面起着至关重要的作用。本文提出了一种基于深度学习的几何方法识别混沌动力学的新方法。具体来说,我们从观测到的时间序列数据构造一个映射,并在映射中寻找一个拓扑马蹄形的存在,这表明混沌行为。通过在hsamnon图、Lorenz系统和Duffing系统上的数值实验,证明了该方法的有效性。结果表明,将拓扑马蹄形理论与深度神经网络相结合,为从时间序列中检测复杂非线性系统的混沌提供了一种有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信