Lina Sun, Cangang Zhang, Anjun Jiao, Yanhong Su, Tianzhe Zhang, Qianhao Wang, Yao Ge, Chen Yang, Ning Yuan, Lianjun Zhang, Chenming Sun, Liang Chen, Lilin Ye, Baojun Zhang
{"title":"CCR2+ monocytes promote memory CD8+ T-cell differentiation via membrane-bound TGF-β","authors":"Lina Sun, Cangang Zhang, Anjun Jiao, Yanhong Su, Tianzhe Zhang, Qianhao Wang, Yao Ge, Chen Yang, Ning Yuan, Lianjun Zhang, Chenming Sun, Liang Chen, Lilin Ye, Baojun Zhang","doi":"10.1038/s41423-025-01299-2","DOIUrl":null,"url":null,"abstract":"Upon antigen recognition, CD8+ T cells undergo robust expansion and differentiation to give rise to effector and memory CD8+ T cells. The spatial determinants of the fate of effector and memory CD8+ T cells during acute infection are poorly understood. By integrating single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics, we revealed that naïve CD8+ T cells adopted a divergent trajectory in which they rapidly differentiated into memory precursor (MP) cells and IFN-responsive cells, with the latter representing the entry point of the effector T-cell lineage. In the spleen, monocytes largely colocalized with CD8+ MP cells following antigen stimulation. Specifically, compared with dendritic cells (DCs), the Ly6ChiCCR2+ subset of monocytes promotes memory CD8+ T-cell differentiation. Mechanistically, monocytes express high levels of membrane-bound transforming growth factor-β (TGF-β), which is activated by thrombospondin-1 (TSP-1) to drive the memory CD8+ T-cell program through Smad signaling. Overall, our study reveals a novel spatial mechanism for CD8+ T-cell fate decisions, shedding light on the importance of monocytes in fostering memory CD8+ T-cell development in a cell‒cell contact- and TGF-β-dependent manner.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"22 8","pages":"869-888"},"PeriodicalIF":19.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular &Molecular Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41423-025-01299-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Upon antigen recognition, CD8+ T cells undergo robust expansion and differentiation to give rise to effector and memory CD8+ T cells. The spatial determinants of the fate of effector and memory CD8+ T cells during acute infection are poorly understood. By integrating single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics, we revealed that naïve CD8+ T cells adopted a divergent trajectory in which they rapidly differentiated into memory precursor (MP) cells and IFN-responsive cells, with the latter representing the entry point of the effector T-cell lineage. In the spleen, monocytes largely colocalized with CD8+ MP cells following antigen stimulation. Specifically, compared with dendritic cells (DCs), the Ly6ChiCCR2+ subset of monocytes promotes memory CD8+ T-cell differentiation. Mechanistically, monocytes express high levels of membrane-bound transforming growth factor-β (TGF-β), which is activated by thrombospondin-1 (TSP-1) to drive the memory CD8+ T-cell program through Smad signaling. Overall, our study reveals a novel spatial mechanism for CD8+ T-cell fate decisions, shedding light on the importance of monocytes in fostering memory CD8+ T-cell development in a cell‒cell contact- and TGF-β-dependent manner.
期刊介绍:
Cellular & Molecular Immunology, a monthly journal from the Chinese Society of Immunology and the University of Science and Technology of China, serves as a comprehensive platform covering both basic immunology research and clinical applications. The journal publishes a variety of article types, including Articles, Review Articles, Mini Reviews, and Short Communications, focusing on diverse aspects of cellular and molecular immunology.