{"title":"LEADR, a p63 target, dampens interferon signalling in bladder cancer.","authors":"Damiano Barnaba, Mariacristina Franzese Canonico, Manuela Helmer-Citterich, Paolo Gandellini, Gerry Melino, Artem Smirnov, Eleonora Candi","doi":"10.1038/s41420-025-02546-1","DOIUrl":null,"url":null,"abstract":"<p><p>Bladder cancer affects over half a million people worldwide each year. Recent advances in early detection allowed a successful management of non-aggressive cancers, yet the recurrence rate remains high. Aggressive muscle-invasive bladder tumours are life-threatening and challenging to cure. Therefore, understanding of key molecular pathways involved in cancer progression is critical for developing of new personalised targeted therapies. Recently, non-coding RNAs (ncRNAs) have emerged as key regulators orchestrating complex biological processes in cancer, yet their function is not fully understood. Here, we compare non-muscle invasive and muscle invasive cell lines and identify a ncRNA gene MIR205HG and its transcript LEADR among the top ncRNAs downregulated in muscle invasive urothelial tumours. We show that LEADR expression is epigenetically regulated by master transcription factor p63. LEADR is localised in the nuclei of non-muscle invasive bladder cancer cells where it dampens hyperactivation of interferon stimulated genes possibly increasing sensitivity of bladder cancer cells to interferon signalling. These findings uncover an anti-tumoral role of non-coding RNA LEADR in mediating immune response in bladder cancer.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"264"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02546-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bladder cancer affects over half a million people worldwide each year. Recent advances in early detection allowed a successful management of non-aggressive cancers, yet the recurrence rate remains high. Aggressive muscle-invasive bladder tumours are life-threatening and challenging to cure. Therefore, understanding of key molecular pathways involved in cancer progression is critical for developing of new personalised targeted therapies. Recently, non-coding RNAs (ncRNAs) have emerged as key regulators orchestrating complex biological processes in cancer, yet their function is not fully understood. Here, we compare non-muscle invasive and muscle invasive cell lines and identify a ncRNA gene MIR205HG and its transcript LEADR among the top ncRNAs downregulated in muscle invasive urothelial tumours. We show that LEADR expression is epigenetically regulated by master transcription factor p63. LEADR is localised in the nuclei of non-muscle invasive bladder cancer cells where it dampens hyperactivation of interferon stimulated genes possibly increasing sensitivity of bladder cancer cells to interferon signalling. These findings uncover an anti-tumoral role of non-coding RNA LEADR in mediating immune response in bladder cancer.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.