Comparative structural analysis of stereom polymorphs in the sea urchin test.

IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL
Ronald Seidel, Konrad Handrich, Marie Albéric, Jonathan Perrin, Derk Joester, Yael Politi, Luca Bertinetti
{"title":"Comparative structural analysis of stereom polymorphs in the sea urchin test.","authors":"Ronald Seidel, Konrad Handrich, Marie Albéric, Jonathan Perrin, Derk Joester, Yael Politi, Luca Bertinetti","doi":"10.1039/d5fd00033e","DOIUrl":null,"url":null,"abstract":"<p><p>The fenestrated ultrastructure of the sea urchin endoskeleton has attracted the attention of researchers in different fields due to its morphological complexity and crystallographic properties. Microscopic calcitic trabeculae form an intricate bicontinuous network, called the stereom. The stereom exhibits a wide variation of pore patterns, but is essentially a single calcite crystal (mono-crystalline). The polymorphism and crystal orientation in the skeletons of sea urchins have both been previously extensively described, mostly for taxonomical reasons and for mechanical studies. Moreover, while the resemblance of the stereom architecture to constant-mean-curvature (CMC) structures has been pointed out, a quantitative description and critical analysis is still lacking. Here, we use synchrotron micro-computed tomography to capture the three-dimensional (3D) architecture of the skeletal stereom in sea urchins for morphological quantification. By characterising the different stereom types, we define a data processing pipeline that allows inter-individual and interspecies comparison of stereom architectures, with implications for sea urchin taxonomy, mechanics, and skeletal growth. We further show that the various stereom morphologies are bicontinuous CMC surfaces that are unconstrained by crystallography. Our results highlight the properties of the soft tissue filling the stereom pore space in defining the shape of sea urchin biocalcite.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5fd00033e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fenestrated ultrastructure of the sea urchin endoskeleton has attracted the attention of researchers in different fields due to its morphological complexity and crystallographic properties. Microscopic calcitic trabeculae form an intricate bicontinuous network, called the stereom. The stereom exhibits a wide variation of pore patterns, but is essentially a single calcite crystal (mono-crystalline). The polymorphism and crystal orientation in the skeletons of sea urchins have both been previously extensively described, mostly for taxonomical reasons and for mechanical studies. Moreover, while the resemblance of the stereom architecture to constant-mean-curvature (CMC) structures has been pointed out, a quantitative description and critical analysis is still lacking. Here, we use synchrotron micro-computed tomography to capture the three-dimensional (3D) architecture of the skeletal stereom in sea urchins for morphological quantification. By characterising the different stereom types, we define a data processing pipeline that allows inter-individual and interspecies comparison of stereom architectures, with implications for sea urchin taxonomy, mechanics, and skeletal growth. We further show that the various stereom morphologies are bicontinuous CMC surfaces that are unconstrained by crystallography. Our results highlight the properties of the soft tissue filling the stereom pore space in defining the shape of sea urchin biocalcite.

海胆试验中立体多形体的比较结构分析。
海胆内骨骼的开孔超微结构由于其形态的复杂性和晶体学性质而引起了不同领域研究者的关注。微观的钙质小梁形成一个复杂的双连续网络,称为体。该体具有多种孔隙模式,但本质上是单一方解石晶体(单晶)。海胆骨骼的多态性和晶体取向在以前都有广泛的描述,主要是出于分类学的原因和力学研究。此外,虽然指出了立体结构与等平均曲率(CMC)结构的相似之处,但仍缺乏定量描述和批判性分析。在这里,我们使用同步加速器微型计算机断层扫描捕捉海胆骨骼立体的三维(3D)结构进行形态学量化。通过描述不同的体位类型,我们定义了一个数据处理管道,允许个体间和物种间的体位结构比较,这对海胆分类学、力学和骨骼生长都有影响。我们进一步表明,各种立体形态是双连续的CMC表面,不受晶体学的约束。我们的研究结果在确定海胆生物方解石的形状时突出了填充体孔空间的软组织的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信