Spatial Dynamic Early Warning of Different Positions in Underwater Tunnel Driven by Real-Time Monitoring Data

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Xu-Yan Tan, Weizhong Chen, Lixiang Fan, Junchen Ye, Bowen Du
{"title":"Spatial Dynamic Early Warning of Different Positions in Underwater Tunnel Driven by Real-Time Monitoring Data","authors":"Xu-Yan Tan,&nbsp;Weizhong Chen,&nbsp;Lixiang Fan,&nbsp;Junchen Ye,&nbsp;Bowen Du","doi":"10.1155/stc/5397749","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Research on early warning of tunnel anomalies is fundamental for achieving intelligent management. However, most current methods for determining early-warning values of tunnel mechanics indicators are different to couple the nonlinear variation property and spatial positional difference. Therefore, this research presents a novel approach to tunnel early warning based on deep autoregressive learning method (DL-AR) that considers the spatiotemporal correlations of structural mechanics responses, specifically tailored to dynamically determine the warning thresholds at different spatial positions. The methodology introduces a framework for predictive modeling and instantiates it on a typical underwater shield tunnel. After thoroughly learning the temporal and spatial correlations of structural mechanical responses, accurate predictions are made for the evolving trends of structural behaviors and the probabilities to the reasonable fluctuation range. Based on these predictions, spatially varying alert thresholds for structural behaviors are proposed. To ensure the reliability of the proposed model, a series of discussions and validation experiments are conducted. Results indicate that the proposed model effectively captured the spatiotemporal characteristics of structural evolution and identified alert ranges, defining permissible variations in structural trends. The prediction results showed near to 99% consistency with actual data, a 5% enhancement compared to classical models. Any deviation beyond this range triggers an early warning, demonstrating the efficacy of model in anticipating and responding to potential structural issues.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/5397749","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/5397749","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Research on early warning of tunnel anomalies is fundamental for achieving intelligent management. However, most current methods for determining early-warning values of tunnel mechanics indicators are different to couple the nonlinear variation property and spatial positional difference. Therefore, this research presents a novel approach to tunnel early warning based on deep autoregressive learning method (DL-AR) that considers the spatiotemporal correlations of structural mechanics responses, specifically tailored to dynamically determine the warning thresholds at different spatial positions. The methodology introduces a framework for predictive modeling and instantiates it on a typical underwater shield tunnel. After thoroughly learning the temporal and spatial correlations of structural mechanical responses, accurate predictions are made for the evolving trends of structural behaviors and the probabilities to the reasonable fluctuation range. Based on these predictions, spatially varying alert thresholds for structural behaviors are proposed. To ensure the reliability of the proposed model, a series of discussions and validation experiments are conducted. Results indicate that the proposed model effectively captured the spatiotemporal characteristics of structural evolution and identified alert ranges, defining permissible variations in structural trends. The prediction results showed near to 99% consistency with actual data, a 5% enhancement compared to classical models. Any deviation beyond this range triggers an early warning, demonstrating the efficacy of model in anticipating and responding to potential structural issues.

基于实时监测数据的水下隧道不同位置空间动态预警
隧道异常预警研究是实现隧道智能化管理的基础。然而,目前确定隧道力学指标预警值的方法大多是将非线性变化特性与空间位置差异相结合。因此,本研究提出了一种基于深度自回归学习方法(DL-AR)的隧道预警新方法,该方法考虑了结构力学响应的时空相关性,专门针对不同空间位置动态确定预警阈值。该方法提出了一种预测建模框架,并对某典型水下盾构隧道进行了实例分析。在深入了解结构力学响应的时空相关性后,可以准确预测结构性能的演变趋势和合理波动范围的概率。基于这些预测,提出了结构行为的空间变化预警阈值。为了保证所提模型的可靠性,进行了一系列的讨论和验证实验。结果表明,该模型有效地捕捉了结构演化的时空特征,并确定了警戒范围,定义了结构趋势的允许变化。预测结果与实际数据的一致性接近99%,与经典模型相比提高了5%。任何超出此范围的偏差都会触发早期预警,证明模型在预测和响应潜在结构问题方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信