SangEun Lee;Seoyun Kim;Yubeen Lee;Jufeng Yang;Eunil Park
{"title":"Enhancing Dimensional Image Emotion Detection With a Low-Resource Dataset via Two-Stage Training","authors":"SangEun Lee;Seoyun Kim;Yubeen Lee;Jufeng Yang;Eunil Park","doi":"10.1109/TCDS.2024.3465602","DOIUrl":null,"url":null,"abstract":"Image emotion analysis has gained notable attention owing to the growing importance of computationally modeling human emotions. Most previous studies have focused on classifying the feelings evoked by an image into predefined emotion categories. Compared with these categorical approaches which cannot address the ambiguity and complexity of human emotions, recent studies have taken dimensional approaches to address these problems. However, there is still a limitation in that the number of dimensional datasets is significantly smaller for model training, compared with many available categorical datasets. We propose four types of frameworks that use categorical datasets to predict emotion values for a given image in the valence–arousal (VA) space. Specifically, our proposed framework is trained to predict continuous emotion values under the supervision of categorical labels. Extensive experiments demonstrate that our approach showed a positive correlation with the actual VA values of the dimensional dataset. In addition, our framework improves further when a small number of dimensional datasets are available for the fine-tuning process.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 3","pages":"455-464"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10685506/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Image emotion analysis has gained notable attention owing to the growing importance of computationally modeling human emotions. Most previous studies have focused on classifying the feelings evoked by an image into predefined emotion categories. Compared with these categorical approaches which cannot address the ambiguity and complexity of human emotions, recent studies have taken dimensional approaches to address these problems. However, there is still a limitation in that the number of dimensional datasets is significantly smaller for model training, compared with many available categorical datasets. We propose four types of frameworks that use categorical datasets to predict emotion values for a given image in the valence–arousal (VA) space. Specifically, our proposed framework is trained to predict continuous emotion values under the supervision of categorical labels. Extensive experiments demonstrate that our approach showed a positive correlation with the actual VA values of the dimensional dataset. In addition, our framework improves further when a small number of dimensional datasets are available for the fine-tuning process.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.