Kuijun Wu;Jingjia Yuan;Xianliang Ge;Ioannis Kakkos;Linze Qian;Sujie Wang;Yamei Yu;Chuantao Li;Yu Sun
{"title":"Brain Network Reorganization in Response to Multilevel Mental Workload in Simulated Flight Tasks","authors":"Kuijun Wu;Jingjia Yuan;Xianliang Ge;Ioannis Kakkos;Linze Qian;Sujie Wang;Yamei Yu;Chuantao Li;Yu Sun","doi":"10.1109/TCDS.2024.3511394","DOIUrl":null,"url":null,"abstract":"In various real-world situations, inappropriate mental workload (MWL) can impair task performance and may cause operational safety risks. Growing efforts have been made to reveal the underlying neural mechanisms of MWL. However, most studies have been limited to well-controlled cognitive tasks, overlooking the exploration of the underlying neural mechanisms in close-to-real human–machine interaction tasks. Here, we investigated the brain network reorganization in response to MWL in a close-to-real simulated flight task. Specifically, a dual-task (primary flight simulation + secondary auditory choice reaction time task) design flight simulation paradigm to mimic real-flight cognitive challenges was introduced to induce varying levels of MWL. The perceived subjective task difficulty and secondary task performance validated the effectiveness of our experimental design. Moreover, multilevel MWL classification was performed to delve into the changes of functional connectivity (FC) in response to different MWL and achieved satisfactory performance (three levels, accuracy <inline-formula><tex-math>$=$</tex-math></inline-formula> 71.85%). Further inspection of the discriminative FCs highlighted the importance of frontal and parietal-occipital brain regions in MWL modulation. Additional graph theoretical analysis revealed increased information transfer efficiency across distributed brain regions with the increase of MWL. Overall, our research offers valuable insights into the neural mechanisms underlying MWL, with potential implications for improving safety in aviation contexts.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 3","pages":"698-709"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10776755/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In various real-world situations, inappropriate mental workload (MWL) can impair task performance and may cause operational safety risks. Growing efforts have been made to reveal the underlying neural mechanisms of MWL. However, most studies have been limited to well-controlled cognitive tasks, overlooking the exploration of the underlying neural mechanisms in close-to-real human–machine interaction tasks. Here, we investigated the brain network reorganization in response to MWL in a close-to-real simulated flight task. Specifically, a dual-task (primary flight simulation + secondary auditory choice reaction time task) design flight simulation paradigm to mimic real-flight cognitive challenges was introduced to induce varying levels of MWL. The perceived subjective task difficulty and secondary task performance validated the effectiveness of our experimental design. Moreover, multilevel MWL classification was performed to delve into the changes of functional connectivity (FC) in response to different MWL and achieved satisfactory performance (three levels, accuracy $=$ 71.85%). Further inspection of the discriminative FCs highlighted the importance of frontal and parietal-occipital brain regions in MWL modulation. Additional graph theoretical analysis revealed increased information transfer efficiency across distributed brain regions with the increase of MWL. Overall, our research offers valuable insights into the neural mechanisms underlying MWL, with potential implications for improving safety in aviation contexts.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.