{"title":"Adaptive Environment Generation for Continual Learning: Integrating Constraint Logic Programming With Deep Reinforcement Learning","authors":"Youness Boutyour;Abdellah Idrissi","doi":"10.1109/TCDS.2024.3485482","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a novel framework that combines constraint logic programming (CLP) with deep reinforcement learning (DRL) to create adaptive environments for continual learning. We focus on two challenging domains: Sudoku puzzles and scheduling problems, where environment complexity evolves based on the agent's performance. By integrating CLP, we dynamically adjust problem difficulty in response to the agent's learning trajectory, ensuring a progressively challenging environment that fosters enhanced problem-solving skills. Empirical results across 500 000 episodes show substantial improvements in solve rates, increasing from 6% to 86% for sudoku puzzles and 7% to 79% for scheduling problems, alongside significant reductions in the average steps required to solve each problem. The proposed adaptive environment generation demonstrates the potential of CLP in advancing RL agents’ continual learning capabilities by dynamically regulating complexity, thus improving their adaptability and learning efficiency. This framework contributes to the broader fields of reinforcement learning and procedural content generation by introducing an innovative approach to continual adaptation in complex environments.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 3","pages":"540-553"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10736545/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we introduce a novel framework that combines constraint logic programming (CLP) with deep reinforcement learning (DRL) to create adaptive environments for continual learning. We focus on two challenging domains: Sudoku puzzles and scheduling problems, where environment complexity evolves based on the agent's performance. By integrating CLP, we dynamically adjust problem difficulty in response to the agent's learning trajectory, ensuring a progressively challenging environment that fosters enhanced problem-solving skills. Empirical results across 500 000 episodes show substantial improvements in solve rates, increasing from 6% to 86% for sudoku puzzles and 7% to 79% for scheduling problems, alongside significant reductions in the average steps required to solve each problem. The proposed adaptive environment generation demonstrates the potential of CLP in advancing RL agents’ continual learning capabilities by dynamically regulating complexity, thus improving their adaptability and learning efficiency. This framework contributes to the broader fields of reinforcement learning and procedural content generation by introducing an innovative approach to continual adaptation in complex environments.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.