Yu-Jia Chen;Wei Chen;Sai Qian Zhang;Hai-Yan Huang;H.T. Kung
{"title":"A Task-Oriented Deep Learning Approach for Human Localization","authors":"Yu-Jia Chen;Wei Chen;Sai Qian Zhang;Hai-Yan Huang;H.T. Kung","doi":"10.1109/TCDS.2024.3485886","DOIUrl":null,"url":null,"abstract":"Radio-based human sensing has attracted substantial research attention due to its wide range of applications, including e-healthcare monitoring, indoor security, and industrial surveillance. However, most existing studies rely on fixed receivers to capture wireless signal perturbations. This article introduces UH-Sense, the first human sensing system using an unmanned aerial vehicle (UAV) equipped with an omnidirectional antenna to measure signal strength from surrounding WiFi access points (APs). UH-Sense addresses the challenge of multisource UAV-induced noise with a novel data-driven learning-based approach that denoises corrupted data without prior knowledge of noise characteristics. Furthermore, we develop a localization model based on radio tomography imaging (RTI) that localizes humans without collecting the fingerprint database. We demonstrate that UH-Sense is readily deployable on commodity platforms and evaluate its performance in different real-world environments including irregular AP deployment and nonline-of-sight (NLOS) scenarios. Experimental results show that UH-Sense achieves a high detection performance with an average F1 score of 0.93 and yields similar or even better localization performance than that of using clean data (i.e., data collected at a fixed receiver), which has not been achieved by any of the state-of-the-art denoising methods.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 3","pages":"525-539"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10734221/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Radio-based human sensing has attracted substantial research attention due to its wide range of applications, including e-healthcare monitoring, indoor security, and industrial surveillance. However, most existing studies rely on fixed receivers to capture wireless signal perturbations. This article introduces UH-Sense, the first human sensing system using an unmanned aerial vehicle (UAV) equipped with an omnidirectional antenna to measure signal strength from surrounding WiFi access points (APs). UH-Sense addresses the challenge of multisource UAV-induced noise with a novel data-driven learning-based approach that denoises corrupted data without prior knowledge of noise characteristics. Furthermore, we develop a localization model based on radio tomography imaging (RTI) that localizes humans without collecting the fingerprint database. We demonstrate that UH-Sense is readily deployable on commodity platforms and evaluate its performance in different real-world environments including irregular AP deployment and nonline-of-sight (NLOS) scenarios. Experimental results show that UH-Sense achieves a high detection performance with an average F1 score of 0.93 and yields similar or even better localization performance than that of using clean data (i.e., data collected at a fixed receiver), which has not been achieved by any of the state-of-the-art denoising methods.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.