{"title":"Time-varying vector error-correction models: Estimation and inference","authors":"Jiti Gao , Bin Peng , Yayi Yan","doi":"10.1016/j.jeconom.2025.106035","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers a time-varying vector error-correction model that allows for different time series behaviors (e.g., unit-root and locally stationary processes) to interact with each other and co-exist. From a practical perspective, this framework can be used to estimate shifts in the predictability of non-stationary variables, and test whether economic theories hold periodically, etc. We first develop a time-varying Granger Representation Theorem, which facilitates the establishment of an asymptotic theory for the model, and then propose estimation and inferential methods for both short-run and long-run coefficients. We also propose an information criterion to estimate the lag length, a singular-value ratio test to determine the cointegration rank, and a hypothesis test to examine the parameter stability. Finally, we extend the framework to allow for unknown structural breaks in either cointegration relationship or time-varying coefficient functions. To validate the theoretical findings, we conduct extensive simulations, and demonstrate the empirical relevance by testing the present value model for stock returns.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106035"},"PeriodicalIF":9.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000892","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers a time-varying vector error-correction model that allows for different time series behaviors (e.g., unit-root and locally stationary processes) to interact with each other and co-exist. From a practical perspective, this framework can be used to estimate shifts in the predictability of non-stationary variables, and test whether economic theories hold periodically, etc. We first develop a time-varying Granger Representation Theorem, which facilitates the establishment of an asymptotic theory for the model, and then propose estimation and inferential methods for both short-run and long-run coefficients. We also propose an information criterion to estimate the lag length, a singular-value ratio test to determine the cointegration rank, and a hypothesis test to examine the parameter stability. Finally, we extend the framework to allow for unknown structural breaks in either cointegration relationship or time-varying coefficient functions. To validate the theoretical findings, we conduct extensive simulations, and demonstrate the empirical relevance by testing the present value model for stock returns.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.