{"title":"MiniMaxAD: A lightweight autoencoder for feature-rich anomaly detection","authors":"Fengjie Wang, Chengming Liu, Lei Shi, Haibo Pang","doi":"10.1016/j.compind.2025.104315","DOIUrl":null,"url":null,"abstract":"<div><div>Previous industrial anomaly detection (IAD) methods often struggle to handle the extensive diversity in training sets, particularly when they contain stylistically diverse and feature-rich samples, which we categorize as feature-rich anomaly detection datasets (FRADs). This challenge is evident in applications such as multi-view and multi-class scenarios. To address this challenge, we developed MiniMaxAD, a efficient autoencoder designed to efficiently compress and memorize extensive information from normal images. Our model employs a technique that enhances feature diversity, thereby increasing the effective capacity of the network. It also utilizes large kernel convolution to extract highly abstract patterns, which contribute to efficient and compact feature embedding. Moreover, we introduce an Adaptive Contraction Hard Mining Loss (ADCLoss), specifically tailored to FRADs. In our methodology, any dataset can be unified under the framework of feature-rich anomaly detection, in a way that the benefits far outweigh the drawbacks. Our approach has achieved state-of-the-art performance in multiple challenging benchmarks. Code is available at: <span><span>https://github.com/WangFengJiee/MiniMaxAD</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"171 ","pages":"Article 104315"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525000806","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Previous industrial anomaly detection (IAD) methods often struggle to handle the extensive diversity in training sets, particularly when they contain stylistically diverse and feature-rich samples, which we categorize as feature-rich anomaly detection datasets (FRADs). This challenge is evident in applications such as multi-view and multi-class scenarios. To address this challenge, we developed MiniMaxAD, a efficient autoencoder designed to efficiently compress and memorize extensive information from normal images. Our model employs a technique that enhances feature diversity, thereby increasing the effective capacity of the network. It also utilizes large kernel convolution to extract highly abstract patterns, which contribute to efficient and compact feature embedding. Moreover, we introduce an Adaptive Contraction Hard Mining Loss (ADCLoss), specifically tailored to FRADs. In our methodology, any dataset can be unified under the framework of feature-rich anomaly detection, in a way that the benefits far outweigh the drawbacks. Our approach has achieved state-of-the-art performance in multiple challenging benchmarks. Code is available at: https://github.com/WangFengJiee/MiniMaxAD.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.