Fast, Robust, and Laser-Free Universal Entangling Gates for Trapped-Ion Quantum Computing

IF 15.7 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Markus Nünnerich, Daniel Cohen, Patrick Barthel, Patrick H. Huber, Dorna Niroomand, Alex Retzker, Christof Wunderlich
{"title":"Fast, Robust, and Laser-Free Universal Entangling Gates for Trapped-Ion Quantum Computing","authors":"Markus Nünnerich, Daniel Cohen, Patrick Barthel, Patrick H. Huber, Dorna Niroomand, Alex Retzker, Christof Wunderlich","doi":"10.1103/physrevx.15.021079","DOIUrl":null,"url":null,"abstract":"A novel two-qubit entangling gate for trapped-ion quantum processors is proposed theoretically and demonstrated experimentally. During the gate, double-dressed quantum states are created by applying a phase-modulated continuous driving field. The speed of this quantum gate is an order of magnitude higher than that of previously demonstrated rf controlled two-qubit entangling gates in static magnetic field gradients. At the same time, the field driving the gate dynamically decouples the qubits from amplitude and frequency noise, increasing the qubits’ coherence time by 3 orders of magnitude. The gate requires only a single continuous rf field per qubit, making it well suited for scaling a quantum processor to large numbers of qubits. Implementing this entangling gate, we generate the Bell states |</a:mo>Φ</a:mi>+</a:mo></a:msup>⟩</a:mo></a:math> and <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mo stretchy=\"false\">|</f:mo><f:msup><f:mi mathvariant=\"normal\">Ψ</f:mi><f:mo>+</f:mo></f:msup><f:mo stretchy=\"false\">⟩</f:mo></f:math> in less than or equal to <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mn>313</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi mathvariant=\"normal\">μ</k:mi><k:mi mathvariant=\"normal\">s</k:mi></k:mrow></k:math> with fidelities up to <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msubsup><o:mn>98</o:mn><o:mrow><o:mo>−</o:mo><o:mn>3</o:mn></o:mrow><o:mrow><o:mo>+</o:mo><o:mn>2</o:mn></o:mrow></o:msubsup><o:mo>%</o:mo></o:math> in a static magnetic gradient of only <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:mn>19.09</q:mn><q:mtext> </q:mtext><q:mtext> </q:mtext><q:mi mathvariant=\"normal\">T</q:mi><q:mo>/</q:mo><q:mi mathvariant=\"normal\">m</q:mi></q:mrow></q:math>. At higher magnetic field gradients, the entangling gate speed can be further improved to match that of laser-based counterparts. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"100 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021079","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel two-qubit entangling gate for trapped-ion quantum processors is proposed theoretically and demonstrated experimentally. During the gate, double-dressed quantum states are created by applying a phase-modulated continuous driving field. The speed of this quantum gate is an order of magnitude higher than that of previously demonstrated rf controlled two-qubit entangling gates in static magnetic field gradients. At the same time, the field driving the gate dynamically decouples the qubits from amplitude and frequency noise, increasing the qubits’ coherence time by 3 orders of magnitude. The gate requires only a single continuous rf field per qubit, making it well suited for scaling a quantum processor to large numbers of qubits. Implementing this entangling gate, we generate the Bell states |Φ+⟩ and |Ψ+ in less than or equal to 313 μs with fidelities up to 983+2% in a static magnetic gradient of only 19.09 T/m. At higher magnetic field gradients, the entangling gate speed can be further improved to match that of laser-based counterparts. Published by the American Physical Society 2025
用于捕获离子量子计算的快速、稳健、无激光的通用纠缠门
从理论上提出了一种新型的双量子比特纠缠门,并进行了实验验证。在栅极过程中,通过施加相位调制的连续驱动场来产生双修饰量子态。该量子门的速度比先前演示的静态磁场梯度中射频控制的双量子比特纠缠门的速度高一个数量级。同时,驱动门的场动态地将量子位与振幅和频率噪声解耦,使量子位的相干时间提高了3个数量级。该门每个量子位只需要一个连续的射频场,这使得它非常适合将量子处理器扩展到大量量子位。实现这个纠缠门,我们在小于或等于313 μs的情况下生成贝尔态|Φ+⟩和|Ψ+⟩,保真度高达98−3+2%,静态磁梯度仅为19.09 T/m。在更高的磁场梯度下,纠缠栅的速度可以进一步提高到与基于激光的纠缠栅的速度相当。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信