Robust Detection of Out-of-Distribution Shifts in Chest X-ray Imaging.

Fatemeh Karimi, Farzan Farnia, Kyongtae Tyler Bae
{"title":"Robust Detection of Out-of-Distribution Shifts in Chest X-ray Imaging.","authors":"Fatemeh Karimi, Farzan Farnia, Kyongtae Tyler Bae","doi":"10.1007/s10278-025-01559-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the critical challenge of detecting out-of-distribution (OOD) chest X-rays, where subtle view differences between lateral and frontal radiographs can lead to diagnostic errors. We develop a GAN-based framework that learns the inherent feature distribution of frontal views from the MIMIC-CXR dataset through latent space optimization and Kolmogorov-Smirnov statistical testing. Our approach generates similarity scores to reliably identify OOD cases, achieving exceptional performance with 100% precision, and 97.5% accuracy in detecting lateral views. The method demonstrates consistent reliability across operating conditions, maintaining accuracy above 92.5% and precision exceeding 93% under varying detection thresholds. These results provide both theoretical insights and practical solutions for OOD detection in medical imaging, demonstrating how GANs can establish feature representations for identifying distributional shifts. By significantly improving model reliability when encountering view-based anomalies, our framework enhances the clinical applicability of deep learning systems, ultimately contributing to improved diagnostic safety and patient outcomes.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01559-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the critical challenge of detecting out-of-distribution (OOD) chest X-rays, where subtle view differences between lateral and frontal radiographs can lead to diagnostic errors. We develop a GAN-based framework that learns the inherent feature distribution of frontal views from the MIMIC-CXR dataset through latent space optimization and Kolmogorov-Smirnov statistical testing. Our approach generates similarity scores to reliably identify OOD cases, achieving exceptional performance with 100% precision, and 97.5% accuracy in detecting lateral views. The method demonstrates consistent reliability across operating conditions, maintaining accuracy above 92.5% and precision exceeding 93% under varying detection thresholds. These results provide both theoretical insights and practical solutions for OOD detection in medical imaging, demonstrating how GANs can establish feature representations for identifying distributional shifts. By significantly improving model reliability when encountering view-based anomalies, our framework enhances the clinical applicability of deep learning systems, ultimately contributing to improved diagnostic safety and patient outcomes.

胸部x线成像中偏离分布位移的鲁棒检测。
本研究解决了检测偏离分布(OOD)胸部x线片的关键挑战,其中侧位片和正位片之间的细微视图差异可能导致诊断错误。我们开发了一个基于gan的框架,通过潜在空间优化和Kolmogorov-Smirnov统计检验,从MIMIC-CXR数据集中学习正面视图的固有特征分布。我们的方法生成相似度评分,以可靠地识别OOD病例,在检测侧面视图时达到100%的准确率和97.5%的准确率。在不同的检测阈值下,该方法的准确度保持在92.5%以上,精密度超过93%。这些结果为医学成像中的OOD检测提供了理论见解和实际解决方案,展示了gan如何建立特征表示来识别分布变化。通过显著提高模型在遇到基于视图的异常时的可靠性,我们的框架增强了深度学习系统的临床适用性,最终有助于提高诊断安全性和患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信