Plant NETWORKED and VAP27 Proteins Work in Complexes to Regulate Membrane-Based Functions.

Contact (Thousand Oaks (Ventura County, Calif.)) Pub Date : 2025-05-27 eCollection Date: 2025-01-01 DOI:10.1177/25152564251342533
Patrick J Duckney, Pengwei Wang, Patrick J Hussey
{"title":"Plant NETWORKED and VAP27 Proteins Work in Complexes to Regulate Membrane-Based Functions.","authors":"Patrick J Duckney, Pengwei Wang, Patrick J Hussey","doi":"10.1177/25152564251342533","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic cells are subdivided into specialised organelle compartments, each with unique physiological environments and functions. Interaction and cross-talk between organelles is inherent to Eukaryotic life, and each organelle is physically interconnected to their surrounding subcellular components including the cytoskeleton and adjacent membrane compartments. In animals and yeast, the mechanisms of organelle interaction have been well characterised and are known to have fundamental importance to life. In contrast, we are only beginning to understand the mechanisms and functions of such interactions in plants. The discovery and ongoing characterisation of the NETWORKED (NET) protein family of plant actin-membrane adaptors has greatly advanced our understanding of the mechanisms of organelle-cytoskeletal interaction. Furthermore, unfolding investigation into the NET proteins has revealed their binding partner, VAMP-ASSOCIATED PROTEIN-27 (VAP27), to be a regulator of organelle tethering and interaction with previously unknown, specialised roles in plants. Research on NET and VAP27 proteins has rapidly increased our knowledge of the mechanisms regulating membrane interaction in plants, their functions in regulating cell structure and organisation, as well as their importance to plant growth, development and stress-response. Here, we discuss the discovery and characterisation of the NET and VAP27 proteins, their regulation of organelle interaction and their functions in plants.</p>","PeriodicalId":101304,"journal":{"name":"Contact (Thousand Oaks (Ventura County, Calif.))","volume":"8 ","pages":"25152564251342533"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contact (Thousand Oaks (Ventura County, Calif.))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25152564251342533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eukaryotic cells are subdivided into specialised organelle compartments, each with unique physiological environments and functions. Interaction and cross-talk between organelles is inherent to Eukaryotic life, and each organelle is physically interconnected to their surrounding subcellular components including the cytoskeleton and adjacent membrane compartments. In animals and yeast, the mechanisms of organelle interaction have been well characterised and are known to have fundamental importance to life. In contrast, we are only beginning to understand the mechanisms and functions of such interactions in plants. The discovery and ongoing characterisation of the NETWORKED (NET) protein family of plant actin-membrane adaptors has greatly advanced our understanding of the mechanisms of organelle-cytoskeletal interaction. Furthermore, unfolding investigation into the NET proteins has revealed their binding partner, VAMP-ASSOCIATED PROTEIN-27 (VAP27), to be a regulator of organelle tethering and interaction with previously unknown, specialised roles in plants. Research on NET and VAP27 proteins has rapidly increased our knowledge of the mechanisms regulating membrane interaction in plants, their functions in regulating cell structure and organisation, as well as their importance to plant growth, development and stress-response. Here, we discuss the discovery and characterisation of the NET and VAP27 proteins, their regulation of organelle interaction and their functions in plants.

植物网络蛋白和VAP27蛋白通过复合物调节膜基功能
真核细胞被细分为专门的细胞器室,每个室都有独特的生理环境和功能。细胞器之间的相互作用和串扰是真核生物固有的,每个细胞器都与其周围的亚细胞成分(包括细胞骨架和邻近的膜室)物理上相互连接。在动物和酵母中,细胞器相互作用的机制已经被很好地表征,并且已知对生命具有根本的重要性。相比之下,我们才刚刚开始了解植物中这种相互作用的机制和功能。植物肌动蛋白-膜接头的网络(NET)蛋白家族的发现和持续表征极大地促进了我们对细胞器-细胞骨架相互作用机制的理解。此外,对NET蛋白展开的研究揭示了它们的结合伙伴VAMP-ASSOCIATED PROTEIN-27 (VAP27)是细胞器系结和相互作用的调节剂,在植物中具有以前未知的特殊作用。通过对NET和VAP27蛋白的研究,我们迅速了解了植物膜相互作用的调节机制,它们在调节细胞结构和组织中的功能,以及它们在植物生长发育和应激反应中的重要性。在这里,我们讨论了NET和VAP27蛋白的发现和特性,它们对细胞器相互作用的调节及其在植物中的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信