SimNorth: A novel contrastive learning approach for clustering prenatal ultrasound images.

Juan Prieto, Chiraz Benabdelkader, Teeranan Pokaprakarn, Hina Shah, Yuri Sebastião, Qing Dan, Nariman Almnini, Arieska Nicole Diaz, Srihari Chari, Harmony Chi, Elizabeth Stringer, Jeffrey Stringer
{"title":"SimNorth: A novel contrastive learning approach for clustering prenatal ultrasound images.","authors":"Juan Prieto, Chiraz Benabdelkader, Teeranan Pokaprakarn, Hina Shah, Yuri Sebastião, Qing Dan, Nariman Almnini, Arieska Nicole Diaz, Srihari Chari, Harmony Chi, Elizabeth Stringer, Jeffrey Stringer","doi":"10.1007/978-3-031-44521-7_10","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes SimNorth, an unsupervised learning approach for classifying non-standard fetal ultrasound images. SimNorth utilizes a deep feature learning model with a novel contrastive loss function to project images with similar characteristics closer together in an embedding space while pushing apart those with different image features. We then use non-linear dimensionality reduction via t-SNE and apply standard clustering algorithms such as k-means and dbscan in 2D embedding space to identify clusters containing similar fetal structures. We compare SimNorth to other unsupervised learning techniques (such as Autoencoders, MoCo, and SimCLR) and demonstrate its superior performance based on cluster purity measures.</p>","PeriodicalId":520253,"journal":{"name":"Simplifying medical ultrasound : 4th International Workshop, ASMUS 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings. ASMUS (Workshop) (4th : 2023 : Vancouver, B.C. ; Online)","volume":"14337 ","pages":"100-108"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simplifying medical ultrasound : 4th International Workshop, ASMUS 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings. ASMUS (Workshop) (4th : 2023 : Vancouver, B.C. ; Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-44521-7_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes SimNorth, an unsupervised learning approach for classifying non-standard fetal ultrasound images. SimNorth utilizes a deep feature learning model with a novel contrastive loss function to project images with similar characteristics closer together in an embedding space while pushing apart those with different image features. We then use non-linear dimensionality reduction via t-SNE and apply standard clustering algorithms such as k-means and dbscan in 2D embedding space to identify clusters containing similar fetal structures. We compare SimNorth to other unsupervised learning techniques (such as Autoencoders, MoCo, and SimCLR) and demonstrate its superior performance based on cluster purity measures.

SimNorth:一种新的产前超声图像聚类对比学习方法。
本文介绍了一种用于非标准胎儿超声图像分类的无监督学习方法SimNorth。SimNorth利用一种具有新型对比损失函数的深度特征学习模型,将具有相似特征的图像投影到嵌入空间中,同时将具有不同图像特征的图像分开。然后,我们通过t-SNE使用非线性降维,并在二维嵌入空间中应用k-means和dbscan等标准聚类算法来识别包含相似胎儿结构的聚类。我们将SimNorth与其他无监督学习技术(如Autoencoders, MoCo和SimCLR)进行比较,并基于聚类纯度度量证明其优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信