JailbreakLens: Visual Analysis of Jailbreak Attacks Against Large Language Models.

Yingchaojie Feng, Zhizhang Chen, Zhining Kang, Sijia Wang, Haoyu Tian, Wei Zhang, Minfeng Zhu, Wei Chen
{"title":"JailbreakLens: Visual Analysis of Jailbreak Attacks Against Large Language Models.","authors":"Yingchaojie Feng, Zhizhang Chen, Zhining Kang, Sijia Wang, Haoyu Tian, Wei Zhang, Minfeng Zhu, Wei Chen","doi":"10.1109/TVCG.2025.3575694","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation of large language models (LLMs) has underscored concerns regarding their security vulnerabilities, notably against jailbreak attacks, where adversaries design jailbreak prompts to circumvent safety mechanisms for potential misuse. Addressing these concerns necessitates a comprehensive analysis of jailbreak prompts to evaluate LLMs' defensive capabilities and identify potential weaknesses. However, the complexity of evaluating jailbreak performance and understanding prompt characteristics makes this analysis laborious. We collaborate with domain experts to characterize problems and propose an LLM-assisted framework to streamline the analysis process. It provides automatic jailbreak assessment to facilitate performance evaluation and support analysis of components and keywords in prompts. Based on the framework, we design JailbreakLens, a visual analysis system that enables users to explore the jailbreak performance against the target model, conduct multi-level analysis of prompt characteristics, and refine prompt instances to verify findings. Through a case study, technical evaluations, and expert interviews, we demonstrate our system's effectiveness in helping users evaluate model security and identify model weaknesses.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3575694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of large language models (LLMs) has underscored concerns regarding their security vulnerabilities, notably against jailbreak attacks, where adversaries design jailbreak prompts to circumvent safety mechanisms for potential misuse. Addressing these concerns necessitates a comprehensive analysis of jailbreak prompts to evaluate LLMs' defensive capabilities and identify potential weaknesses. However, the complexity of evaluating jailbreak performance and understanding prompt characteristics makes this analysis laborious. We collaborate with domain experts to characterize problems and propose an LLM-assisted framework to streamline the analysis process. It provides automatic jailbreak assessment to facilitate performance evaluation and support analysis of components and keywords in prompts. Based on the framework, we design JailbreakLens, a visual analysis system that enables users to explore the jailbreak performance against the target model, conduct multi-level analysis of prompt characteristics, and refine prompt instances to verify findings. Through a case study, technical evaluations, and expert interviews, we demonstrate our system's effectiveness in helping users evaluate model security and identify model weaknesses.

越狱镜头:针对大型语言模型的越狱攻击的可视化分析。
大型语言模型(llm)的激增强调了对其安全漏洞的关注,特别是针对越狱攻击,攻击者设计越狱提示以绕过安全机制以防止潜在的滥用。解决这些问题需要对越狱提示进行全面分析,以评估llm的防御能力并识别潜在的弱点。然而,评估越狱性能和理解提示特征的复杂性使得这种分析非常费力。我们与领域专家合作来描述问题,并提出一个llm辅助框架来简化分析过程。它提供自动越狱评估,以方便性能评估和支持分析提示中的组件和关键字。基于该框架,我们设计了一个可视化分析系统JailbreakLens,使用户能够针对目标模型探索越狱性能,对提示特征进行多层次分析,并细化提示实例来验证发现。通过案例研究、技术评估和专家访谈,我们展示了我们的系统在帮助用户评估模型安全性和识别模型弱点方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信