{"title":"Efficiency for evaluation of disease etiologic heterogeneity in case-case and case-control studies.","authors":"Aya Kuchiba, Ran Gao, Molin Wang","doi":"10.1515/ijb-2023-0027","DOIUrl":null,"url":null,"abstract":"<p><p>A disease of interest can often be classified into subtypes based on its various molecular or pathological characteristics. Recent epidemiological studies have increasingly provided evidence that some molecular subtypes in a disease may have distinct etiologies, by assessing whether the associations of a potential risk factor vary by disease subtypes (i.e., etiologic heterogeneity). Case-control and case-case studies are popular study designs in molecular epidemiology, and both can be validly applied in studies of etiologic heterogeneity. This study compared the efficiency of the etiologic heterogeneity parameter estimation between these two study designs by theoretical and numerical examinations. In settings where the two study designs have the same number of cases, the results showed that, compared with the case-case study, case-control studies always provided more efficient estimates or estimates with at least equivalent efficiency for heterogeneity parameters. In addition, we illustrated both approaches in a study for aiming to evaluate the association between plasma free estradiol and breast cancer risk according to the status of tumor estrogen and progesterone receptors, the results of which were originally provided through case-control study data.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A disease of interest can often be classified into subtypes based on its various molecular or pathological characteristics. Recent epidemiological studies have increasingly provided evidence that some molecular subtypes in a disease may have distinct etiologies, by assessing whether the associations of a potential risk factor vary by disease subtypes (i.e., etiologic heterogeneity). Case-control and case-case studies are popular study designs in molecular epidemiology, and both can be validly applied in studies of etiologic heterogeneity. This study compared the efficiency of the etiologic heterogeneity parameter estimation between these two study designs by theoretical and numerical examinations. In settings where the two study designs have the same number of cases, the results showed that, compared with the case-case study, case-control studies always provided more efficient estimates or estimates with at least equivalent efficiency for heterogeneity parameters. In addition, we illustrated both approaches in a study for aiming to evaluate the association between plasma free estradiol and breast cancer risk according to the status of tumor estrogen and progesterone receptors, the results of which were originally provided through case-control study data.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.