John R Ellis, Nyamai Mutono, Andreia Vasconcelos, Samuel M Thumbi, T Déirdre Hollingsworth, Roy M Anderson
{"title":"How improvements to drug effectiveness impact mass drug administration for control and elimination of schistosomiasis.","authors":"John R Ellis, Nyamai Mutono, Andreia Vasconcelos, Samuel M Thumbi, T Déirdre Hollingsworth, Roy M Anderson","doi":"10.1371/journal.pntd.0012624","DOIUrl":null,"url":null,"abstract":"<p><p>Schistosomiasis affects more than 230 million people worldwide. Control and elimination of this parasitic infection is based on mass drug administration of praziquantel (PZQ), which has been in use for several decades. Because of the limitations of the efficacy of PZQ especially against juvenile worms, and the threat of the emergence of resistance, there is a need to consider alternative formulations or delivery methods, or new drugs that could be more efficacious. We use an individual-based stochastic model of parasite transmission to investigate the effects of possible improvements to drug efficacy. We consider an increase in efficacy compared to PZQ, as well as additional efficacy against the juvenile life stage of schistosome parasites in the human host, and a slow-release formulation that would provide long-lasting efficacy for a period of time following treatment. Analyses suggest a drug with a high efficacy of 99%, or with efficacy lasting 24 weeks after treatment, are the two most effective individual improvements to the drug profile of PZQ. A drug with long lasting efficacy is most beneficial when MDA coverage is low. However, when prevalence of infection has already been reduced to a low level, a high efficacy is the most important factor to accelerate interruption of transmission. Our results indicate that increased efficacy against juvenile worms can only result in modest benefits, but the development of a new drug formulation with higher efficacy against adult worms or long-lasting efficacy would create an improvement to the community impact over the currently used formulation.</p>","PeriodicalId":49000,"journal":{"name":"PLoS Neglected Tropical Diseases","volume":"19 6","pages":"e0012624"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Neglected Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pntd.0012624","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Schistosomiasis affects more than 230 million people worldwide. Control and elimination of this parasitic infection is based on mass drug administration of praziquantel (PZQ), which has been in use for several decades. Because of the limitations of the efficacy of PZQ especially against juvenile worms, and the threat of the emergence of resistance, there is a need to consider alternative formulations or delivery methods, or new drugs that could be more efficacious. We use an individual-based stochastic model of parasite transmission to investigate the effects of possible improvements to drug efficacy. We consider an increase in efficacy compared to PZQ, as well as additional efficacy against the juvenile life stage of schistosome parasites in the human host, and a slow-release formulation that would provide long-lasting efficacy for a period of time following treatment. Analyses suggest a drug with a high efficacy of 99%, or with efficacy lasting 24 weeks after treatment, are the two most effective individual improvements to the drug profile of PZQ. A drug with long lasting efficacy is most beneficial when MDA coverage is low. However, when prevalence of infection has already been reduced to a low level, a high efficacy is the most important factor to accelerate interruption of transmission. Our results indicate that increased efficacy against juvenile worms can only result in modest benefits, but the development of a new drug formulation with higher efficacy against adult worms or long-lasting efficacy would create an improvement to the community impact over the currently used formulation.
期刊介绍:
PLOS Neglected Tropical Diseases publishes research devoted to the pathology, epidemiology, prevention, treatment and control of the neglected tropical diseases (NTDs), as well as relevant public policy.
The NTDs are defined as a group of poverty-promoting chronic infectious diseases, which primarily occur in rural areas and poor urban areas of low-income and middle-income countries. Their impact on child health and development, pregnancy, and worker productivity, as well as their stigmatizing features limit economic stability.
All aspects of these diseases are considered, including:
Pathogenesis
Clinical features
Pharmacology and treatment
Diagnosis
Epidemiology
Vector biology
Vaccinology and prevention
Demographic, ecological and social determinants
Public health and policy aspects (including cost-effectiveness analyses).