Influence of multiple network structures on bayesian estimation of peer effects and statistical power for generalized linear network autocorrelation models.

IF 1.5 Q3 COMPUTER SCIENCE, THEORY & METHODS
Applied Network Science Pub Date : 2025-01-01 Epub Date: 2025-05-31 DOI:10.1007/s41109-025-00709-8
Guanqing Chen, A James O'Malley
{"title":"Influence of multiple network structures on bayesian estimation of peer effects and statistical power for generalized linear network autocorrelation models.","authors":"Guanqing Chen, A James O'Malley","doi":"10.1007/s41109-025-00709-8","DOIUrl":null,"url":null,"abstract":"<p><p>The recent published literature on linear network autocorrelation models of actor behaviors or other mutable attributes has revealed a curious finding. Irrespective of the size of the network and the status of other network features, likelihood-based estimators (e.g., maximum likelihood and Bayesian) of the autocorrelation parameter ([Formula: see text]) are negatively biased and become increasingly so as the density of the network increases. In this paper we investigate the pattern of bias of estimators of [Formula: see text] when analyzing multiple mutually exclusive sub-networks and directed networks with various levels of reciprocity. In addition to considering the case of a linear network autocorrelation model applied to a binary-valued network, the edges may be weighted and the attribute whose actor-interdependence (or peer-effect) we are interested in may be an event (i.e., a binary outcome), a count, or a rate outcome motivating the use of generalized linear network autocorrelation models. We perform a simulation study that reveals that bias reduces substantially as either the number of sub-networks increases or with increased variation across the network in the edge weights but this pattern is not observed with reciprocity. The findings for generalized linear network autocorrelation models are in general similar to those for linear network autocorrelation models. Finally, we perform a statistical power analysis based on these findings for use in designing future studies whose goal is to estimate or to detect peer-effects.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":"10 1","pages":"18"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41109-025-00709-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The recent published literature on linear network autocorrelation models of actor behaviors or other mutable attributes has revealed a curious finding. Irrespective of the size of the network and the status of other network features, likelihood-based estimators (e.g., maximum likelihood and Bayesian) of the autocorrelation parameter ([Formula: see text]) are negatively biased and become increasingly so as the density of the network increases. In this paper we investigate the pattern of bias of estimators of [Formula: see text] when analyzing multiple mutually exclusive sub-networks and directed networks with various levels of reciprocity. In addition to considering the case of a linear network autocorrelation model applied to a binary-valued network, the edges may be weighted and the attribute whose actor-interdependence (or peer-effect) we are interested in may be an event (i.e., a binary outcome), a count, or a rate outcome motivating the use of generalized linear network autocorrelation models. We perform a simulation study that reveals that bias reduces substantially as either the number of sub-networks increases or with increased variation across the network in the edge weights but this pattern is not observed with reciprocity. The findings for generalized linear network autocorrelation models are in general similar to those for linear network autocorrelation models. Finally, we perform a statistical power analysis based on these findings for use in designing future studies whose goal is to estimate or to detect peer-effects.

多网络结构对广义线性网络自相关模型的对等效应和统计力贝叶斯估计的影响。
最近发表的关于行为人行为或其他可变属性的线性网络自相关模型的文献揭示了一个奇怪的发现。无论网络的大小和其他网络特征的状态如何,自相关参数([公式:见文本])的基于似然的估计器(例如,最大似然和贝叶斯)都是负偏的,并且随着网络密度的增加而变得越来越偏。本文研究了[公式:见文]在分析多个互斥子网络和具有不同互易程度的有向网络时估计量的偏差模式。除了考虑将线性网络自相关模型应用于二值网络的情况外,还可以对边缘进行加权,并且我们感兴趣的行动者相互依赖(或对等效应)的属性可能是一个事件(即二进制结果),计数或率结果,从而激发使用广义线性网络自相关模型。我们进行了一项模拟研究,结果表明,随着子网络数量的增加或整个网络中边缘权重的变化增加,偏差会大大减少,但这种模式没有观察到互易性。广义线性网络自相关模型的研究结果与线性网络自相关模型的研究结果大体相似。最后,我们根据这些发现进行了统计能力分析,以用于设计未来的研究,其目标是估计或检测同伴效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Network Science
Applied Network Science Multidisciplinary-Multidisciplinary
CiteScore
4.60
自引率
4.50%
发文量
74
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信