Quantitative electroencephalogram and machine learning to predict expired sevoflurane concentration in infants.

IF 2.2 3区 医学 Q2 ANESTHESIOLOGY
Rachit Kumar, Justin Skowno, Britta S von Ungern-Sternberg, Andrew Davidson, Ting Xu, Jianmin Zhang, XingRong Song, Mazhong Zhang, Ping Zhao, Huacheng Liu, Yifei Jiang, Yunxia Zuo, Jurgen C de Graaff, Laszlo Vutskits, Vanessa A Olbrecht, Peter Szmuk, Allan F Simpao, Fuchiang Rich Tsui, Jayant Nick Pratap, Asif Padiyath, Olivia Nelson, Charles D Kurth, Ian Yuan
{"title":"Quantitative electroencephalogram and machine learning to predict expired sevoflurane concentration in infants.","authors":"Rachit Kumar, Justin Skowno, Britta S von Ungern-Sternberg, Andrew Davidson, Ting Xu, Jianmin Zhang, XingRong Song, Mazhong Zhang, Ping Zhao, Huacheng Liu, Yifei Jiang, Yunxia Zuo, Jurgen C de Graaff, Laszlo Vutskits, Vanessa A Olbrecht, Peter Szmuk, Allan F Simpao, Fuchiang Rich Tsui, Jayant Nick Pratap, Asif Padiyath, Olivia Nelson, Charles D Kurth, Ian Yuan","doi":"10.1007/s10877-025-01301-2","DOIUrl":null,"url":null,"abstract":"<p><p>Processed electroencephalography (EEG) indices used to guide anesthetic dosing in adults are not validated in young infants. Raw EEG can be processed mathematically, yielding quantitative EEG parameters (qEEG). We hypothesized that machine learning combined with qEEG can accurately classify expired sevoflurane concentrations in young infants. Knowledge from this may contribute to development of future infant-specific EEG algorithms. Frontal EEG collected from infants ≤ 3 months were time-matched as one-minute epochs to expired sevoflurane (eSevo). Fifteen qEEG parameters were extracted from each epoch and eight machine learning models combined the qEEG to classify each epoch into one of four eSevo levels (%): 0.1-1.0, 1.0-2.1, 2.1-2.9, and > 2.9. 64 epochs formed the post hoc SHAP dataset to determine the qEEG that contributed most to the model. The remaining epochs were randomly split 50 times into 80/20 training/testing sets. Accuracy and F1-score determined model performance. 42 infants provided 4574 epochs. The top classifiers K-nearest neighbors, default multi-layer perceptron, and support vector machine achieved 67.5-68.7% accuracy. Burst suppression ratio and entropy β were the top contributors to the models. Post hoc analysis performed without burst suppression ratio yielded similar prediction performance. In young infants, machine learning applied to qEEG predicted eSevo levels with moderate success. Burst suppression ratio, the most important contributor, represented an efficient EEG feature that encapsulated underlying EEG changes seen on other qEEG features. These results provided insight into EEG parameter selection and optimal machine learning models used for future development of infant-specific EEG algorithms.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":"999-1014"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-025-01301-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Processed electroencephalography (EEG) indices used to guide anesthetic dosing in adults are not validated in young infants. Raw EEG can be processed mathematically, yielding quantitative EEG parameters (qEEG). We hypothesized that machine learning combined with qEEG can accurately classify expired sevoflurane concentrations in young infants. Knowledge from this may contribute to development of future infant-specific EEG algorithms. Frontal EEG collected from infants ≤ 3 months were time-matched as one-minute epochs to expired sevoflurane (eSevo). Fifteen qEEG parameters were extracted from each epoch and eight machine learning models combined the qEEG to classify each epoch into one of four eSevo levels (%): 0.1-1.0, 1.0-2.1, 2.1-2.9, and > 2.9. 64 epochs formed the post hoc SHAP dataset to determine the qEEG that contributed most to the model. The remaining epochs were randomly split 50 times into 80/20 training/testing sets. Accuracy and F1-score determined model performance. 42 infants provided 4574 epochs. The top classifiers K-nearest neighbors, default multi-layer perceptron, and support vector machine achieved 67.5-68.7% accuracy. Burst suppression ratio and entropy β were the top contributors to the models. Post hoc analysis performed without burst suppression ratio yielded similar prediction performance. In young infants, machine learning applied to qEEG predicted eSevo levels with moderate success. Burst suppression ratio, the most important contributor, represented an efficient EEG feature that encapsulated underlying EEG changes seen on other qEEG features. These results provided insight into EEG parameter selection and optimal machine learning models used for future development of infant-specific EEG algorithms.

Abstract Image

Abstract Image

Abstract Image

定量脑电图和机器学习预测婴儿过期七氟醚浓度。
用于指导成人麻醉剂量的处理脑电图(EEG)指数尚未在幼儿中得到验证。原始脑电信号可以进行数学处理,得到定量的脑电信号参数(qEEG)。我们假设机器学习结合qEEG可以准确地对婴儿过期七氟醚浓度进行分类。从中获得的知识可能有助于未来婴儿特异性脑电图算法的发展。收集≤3个月婴儿的额叶脑电图,以1分钟为一次,与过期七氟醚(eSevo)进行时间匹配。从每个epoch提取15个qEEG参数,8个机器学习模型结合qEEG将每个epoch分为4个eSevo水平(%):0.1-1.0,1.0-2.1,2.1-2.9和> 2.9。64个epoch形成了事后SHAP数据集,以确定对模型贡献最大的qEEG。剩余的epoch被随机分成50次,分为80/20个训练/测试集。准确性和f1分数决定了模型的性能。42个婴儿提供4574个epoch。最近邻分类器k、默认多层感知器和支持向量机的准确率达到67.5-68.7%。突发抑制比和熵β对模型的贡献最大。在没有突发抑制比的情况下进行的事后分析产生了类似的预测性能。在年幼的婴儿中,应用于qEEG的机器学习预测eSevo水平取得了中等成功。脉冲抑制比是最重要的贡献因素,它代表了一种有效的脑电特征,它封装了其他qEEG特征所看到的潜在脑电变化。这些结果为未来开发针对婴儿的脑电图算法提供了脑电图参数选择和最佳机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
13.60%
发文量
144
审稿时长
6-12 weeks
期刊介绍: The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine. The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group. The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信