{"title":"Increasing Cell Sorting Recovery Using the Simple “Three-Puddle Method”","authors":"María José Castro Pérez, Carl Henderson","doi":"10.1002/cyto.a.24942","DOIUrl":null,"url":null,"abstract":"<p>Recovery is a key performance parameter in cell sorters, a metric that assesses the match between the number of particles reported as sorted by the instrument and the actual number of particles gathered in the collection vessels. Sorting relies on the precise timing of the charging of a droplet containing the particle of interest in a critical measurement called drop delay (DD). DD timings are typically reliant on manufacturer recommended fluorescent bead reagents. Cuvette-based cell sorters in particular depend upon these fixed-sized QC beads for an automated approach to the DD calculation using an image-based camera system. Previous literature has highlighted the mismatch between these DD values and the settings best accommodating actual samples. Here, we present a new method for DD calculation—the Three-Puddle Method (3PM), based on procedures originally described for <i>jet-in-air</i> cell sorters; it optimizes DD values according to the target particle to be sorted, increasing sort recoveries for a range of cell sizes and particle types. With regard to recovery, 3PM-calculated DD values correlate with those achieved via optimum DD, defined using Rmax protocol, a robust metric for recovery. The advantages of the 3PM then are that it is a simple-to-implement protocol which has limited cell expenditure, essential in the handling of precious rare samples and the success of single cell and bulk sorting and the downstream applications relying on it.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"107 6","pages":"404-415"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24942","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24942","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recovery is a key performance parameter in cell sorters, a metric that assesses the match between the number of particles reported as sorted by the instrument and the actual number of particles gathered in the collection vessels. Sorting relies on the precise timing of the charging of a droplet containing the particle of interest in a critical measurement called drop delay (DD). DD timings are typically reliant on manufacturer recommended fluorescent bead reagents. Cuvette-based cell sorters in particular depend upon these fixed-sized QC beads for an automated approach to the DD calculation using an image-based camera system. Previous literature has highlighted the mismatch between these DD values and the settings best accommodating actual samples. Here, we present a new method for DD calculation—the Three-Puddle Method (3PM), based on procedures originally described for jet-in-air cell sorters; it optimizes DD values according to the target particle to be sorted, increasing sort recoveries for a range of cell sizes and particle types. With regard to recovery, 3PM-calculated DD values correlate with those achieved via optimum DD, defined using Rmax protocol, a robust metric for recovery. The advantages of the 3PM then are that it is a simple-to-implement protocol which has limited cell expenditure, essential in the handling of precious rare samples and the success of single cell and bulk sorting and the downstream applications relying on it.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.