Revisiting nephrin signaling and its specialized effects on the uniquely adaptable podocyte.

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Casey R Williamson, Una V Pantic, Alice Y Wang, Nina Jones
{"title":"Revisiting nephrin signaling and its specialized effects on the uniquely adaptable podocyte.","authors":"Casey R Williamson, Una V Pantic, Alice Y Wang, Nina Jones","doi":"10.1042/BCJ20230234","DOIUrl":null,"url":null,"abstract":"<p><p>Nephrin is a transmembrane Ig-like domain-containing protein that serves as a central structural and signaling scaffold in kidney filtration. First identified in 1998 as mutated in congenital nephrotic syndrome, the recent identification of nephrin autoantibodies in acquired kidney diseases has sparked renewed interest in nephrin biology. In specialized cells known as podocytes, nephrin helps establish and maintain the slit diaphragm (SD), a unique cell-cell junction formed between interdigitating cell projections known as foot processes (FPs). Together, the SD and FP are among the first stages of renal filtration, where they are subject to numerous biochemical and mechanical stressors. Although podocytes are highly adapted to this environment, over time and with injury, this elevated strain can lead to pathological structural changes, detachment, and proteinuria. As such, the complex set of signaling mechanisms provided by nephrin are essential for controlling podocyte adaptability. Herein, we provide a thorough and up-to-date review on nephrin signaling, including a focus on cross-talk between nephrin interactors and signaling regions across podocytes. We first highlight new findings regarding podocyte structure and function, followed by an emphasis on why nephrin is among the most critical proteins for maintaining these features. We then detail a comprehensive list of known nephrin interactors and describe several of their effects, including calcium regulation, cell survival, cell polarity, phase separation-mediated actin reorganization, and SD-focal adhesion dynamics. Collectively, our emerging understanding of the broader cellular context of nephrin signaling provides important insight for clinical strategies to mitigate podocyte injury and kidney disease progression.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"482 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20230234","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nephrin is a transmembrane Ig-like domain-containing protein that serves as a central structural and signaling scaffold in kidney filtration. First identified in 1998 as mutated in congenital nephrotic syndrome, the recent identification of nephrin autoantibodies in acquired kidney diseases has sparked renewed interest in nephrin biology. In specialized cells known as podocytes, nephrin helps establish and maintain the slit diaphragm (SD), a unique cell-cell junction formed between interdigitating cell projections known as foot processes (FPs). Together, the SD and FP are among the first stages of renal filtration, where they are subject to numerous biochemical and mechanical stressors. Although podocytes are highly adapted to this environment, over time and with injury, this elevated strain can lead to pathological structural changes, detachment, and proteinuria. As such, the complex set of signaling mechanisms provided by nephrin are essential for controlling podocyte adaptability. Herein, we provide a thorough and up-to-date review on nephrin signaling, including a focus on cross-talk between nephrin interactors and signaling regions across podocytes. We first highlight new findings regarding podocyte structure and function, followed by an emphasis on why nephrin is among the most critical proteins for maintaining these features. We then detail a comprehensive list of known nephrin interactors and describe several of their effects, including calcium regulation, cell survival, cell polarity, phase separation-mediated actin reorganization, and SD-focal adhesion dynamics. Collectively, our emerging understanding of the broader cellular context of nephrin signaling provides important insight for clinical strategies to mitigate podocyte injury and kidney disease progression.

重新审视肾素信号传导及其对独特适应性足细胞的特化作用。
肾素是一种跨膜的类igg结构域蛋白,在肾脏滤过过程中起着中心结构和信号支架的作用。1998年首次在先天性肾病综合征中发现突变,最近在获得性肾病中发现的肾素自身抗体引发了对肾素生物学的新兴趣。在称为足细胞的特化细胞中,肾素有助于建立和维持狭缝隔膜(SD),这是一种在交叉的细胞突起之间形成的独特的细胞-细胞连接,称为足突(FPs)。SD和FP共同处于肾脏滤过的第一阶段,在此阶段它们受到许多生化和机械压力。尽管足细胞高度适应这种环境,但随着时间的推移和损伤,这种升高的菌株可导致病理性结构改变、脱离和蛋白尿。因此,肾素提供的一套复杂的信号机制对于控制足细胞适应性至关重要。在这里,我们提供了一个全面的和最新的审查,包括对肾素相互作用物和足细胞信号传导区域之间的串扰的关注。我们首先强调关于足细胞结构和功能的新发现,然后强调为什么肾素是维持这些特征的最关键蛋白质之一。然后,我们详细列出了已知的nephrin相互作用物的综合列表,并描述了它们的几种作用,包括钙调节、细胞存活、细胞极性、相分离介导的肌动蛋白重组和sd焦点粘附动力学。总的来说,我们对肾素信号传导的更广泛的细胞背景的新理解为减轻足细胞损伤和肾脏疾病进展的临床策略提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信