Hampered AMPK-ULK1 cascade in Alzheimer's disease (AD) instigates mitochondria dysfunctions and AD-related alterations which are alleviated by metformin.
{"title":"Hampered AMPK-ULK1 cascade in Alzheimer's disease (AD) instigates mitochondria dysfunctions and AD-related alterations which are alleviated by metformin.","authors":"Arnaud Mary, Samantha Barale, Fanny Eysert, Audrey Valverde, Sandra Lacas-Gervais, Charlotte Bauer, Sabiha Eddarkaoui, Luc Buée, Valérie Buée-Scherrer, Frédéric Checler, Mounia Chami","doi":"10.1186/s13195-025-01772-0","DOIUrl":null,"url":null,"abstract":"<p><p>The adenosine monophosphate-activated protein kinase (AMPK) and its downstream effector Unc-51 like autophagy activating kinase 1 (ULK1) represent a key cellular signaling node, the alteration of which likely contribute to AD development. This study investigated the AMPK-ULK1 pathway activation state in AD and the impact of its modulation on mitochondria structure and function as well as on AD-related alterations. We show in human sporadic AD and 3xTgAD mice brains a defective activating phosphorylation of ULK1 despite the active phosphorylation of AMPK. In addition, we reported defective p-AMPK and p-ULK1 in cells expressing the amyloid precursor protein with the familial Swedish mutation. We then show that the antidiabetic metformin (Met) drug-mediated AMPK-ULK1 cascade activation alleviates structural and functional mitochondrial abnormalities in AD cells and mice brains. Furthermore, in the 3xTgAD brains, it reduces the early accumulation of APP C-terminal fragments (APP-CTFs) as well as amyloid beta (Aβ) burden, microgliosis and astrogliosis occurring at a later disease stage. AMPK-ULK1 activation increases the localization of APP-CTFs within cathepsin D-positive lysosomal compartments and the recruitment of Iba1<sup>+</sup> cells to Aβ plaques in vivo and enhances cathepsin D activity and phagocytic activity of microglia in vitro. Additionally, AMPK-ULK1 activation normalizes dendritic spine morphology in organotypic hippocampal slice cultures modeling AD and alleviates learning deficit in symptomatic 3xTgAD mice. Our study demonstrates potential therapeutic benefits of targeting AMPK-ULK1 cascade to reverse both early and late AD-related alterations, deserving further investigation in fundamental research and in human clinical studies.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"17 1","pages":"127"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-025-01772-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) and its downstream effector Unc-51 like autophagy activating kinase 1 (ULK1) represent a key cellular signaling node, the alteration of which likely contribute to AD development. This study investigated the AMPK-ULK1 pathway activation state in AD and the impact of its modulation on mitochondria structure and function as well as on AD-related alterations. We show in human sporadic AD and 3xTgAD mice brains a defective activating phosphorylation of ULK1 despite the active phosphorylation of AMPK. In addition, we reported defective p-AMPK and p-ULK1 in cells expressing the amyloid precursor protein with the familial Swedish mutation. We then show that the antidiabetic metformin (Met) drug-mediated AMPK-ULK1 cascade activation alleviates structural and functional mitochondrial abnormalities in AD cells and mice brains. Furthermore, in the 3xTgAD brains, it reduces the early accumulation of APP C-terminal fragments (APP-CTFs) as well as amyloid beta (Aβ) burden, microgliosis and astrogliosis occurring at a later disease stage. AMPK-ULK1 activation increases the localization of APP-CTFs within cathepsin D-positive lysosomal compartments and the recruitment of Iba1+ cells to Aβ plaques in vivo and enhances cathepsin D activity and phagocytic activity of microglia in vitro. Additionally, AMPK-ULK1 activation normalizes dendritic spine morphology in organotypic hippocampal slice cultures modeling AD and alleviates learning deficit in symptomatic 3xTgAD mice. Our study demonstrates potential therapeutic benefits of targeting AMPK-ULK1 cascade to reverse both early and late AD-related alterations, deserving further investigation in fundamental research and in human clinical studies.
期刊介绍:
Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.