Estimation of Constrained Factor Models for High-Dimensional Time Series

IF 2.7 3区 经济学 Q1 ECONOMICS
Yitian Liu, Jiazhu Pan, Qiang Xia
{"title":"Estimation of Constrained Factor Models for High-Dimensional Time Series","authors":"Yitian Liu,&nbsp;Jiazhu Pan,&nbsp;Qiang Xia","doi":"10.1002/for.3249","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article studies the estimation of the constrained factor models for high-dimensional time series. The approach is based on the eigenanalysis of a nonnegative definite matrix constructed from the autocovariance matrices. The convergence rate of the estimator for loading matrix and the asymptotic normality of the estimated factor score are explored under regularity conditions set for the proposed model. Our estimation for the constrained factor models can achieve the optimal rate of convergence even in the case of weak factors. The finite sample performance of our approach is examined and compared with the existing methods by Monte Carlo simulations. Our methodology is illustrated and supported by a real data example.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 4","pages":"1467-1477"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3249","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies the estimation of the constrained factor models for high-dimensional time series. The approach is based on the eigenanalysis of a nonnegative definite matrix constructed from the autocovariance matrices. The convergence rate of the estimator for loading matrix and the asymptotic normality of the estimated factor score are explored under regularity conditions set for the proposed model. Our estimation for the constrained factor models can achieve the optimal rate of convergence even in the case of weak factors. The finite sample performance of our approach is examined and compared with the existing methods by Monte Carlo simulations. Our methodology is illustrated and supported by a real data example.

高维时间序列约束因子模型的估计
本文研究了高维时间序列约束因子模型的估计问题。该方法基于自协方差矩阵构造的非负定矩阵的特征分析。在模型设定的正则性条件下,研究了负荷矩阵估计量的收敛速度和估计因子得分的渐近正态性。我们对约束因子模型的估计即使在弱因子的情况下也能达到最优的收敛速度。通过蒙特卡罗仿真验证了该方法的有限样本性能,并与现有方法进行了比较。我们的方法是由一个真实的数据例子说明和支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信