Afees A. S alisu, Wenting Liao, Rangan Gupta, Oguzhan Cepni
{"title":"Economic Conditions and Predictability of US Stock Returns Volatility: Local Factor Versus National Factor in a GARCH-MIDAS Model","authors":"Afees A. S alisu, Wenting Liao, Rangan Gupta, Oguzhan Cepni","doi":"10.1002/for.3251","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The aim of this paper is to utilize the generalized autoregressive conditional heteroscedasticity–mixed data sampling (GARCH-MIDAS) framework to predict the daily volatility of state-level stock returns in the United States (US), based on the weekly metrics from the corresponding broad economic conditions indexes (ECIs). In light of the importance of a common factor in explaining a large proportion of the total variability in the state-level economic conditions, we first apply a dynamic factor model with stochastic volatility (DFM-SV) to filter out the national factor from the local components of weekly state-level ECIs. We find that both the local and national factors of the ECI generally tend to affect state-level volatility negatively. Furthermore, the GARCH-MIDAS model, supplemented by these predictors, surpasses the benchmark GARCH-MIDAS model with realized volatility (GARCH-MIDAS-RV) in a majority of states. Interestingly, the local factor often assumes a more influential role overall, compared with the national factor. Moreover, when the stochastic volatilities associated with the local and national factors are integrated into the GARCH-MIDAS model, they outperform the GARCH-MIDAS-RV in over 80% of the states. Our findings have important implications for investors and policymakers.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 4","pages":"1441-1466"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3251","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to utilize the generalized autoregressive conditional heteroscedasticity–mixed data sampling (GARCH-MIDAS) framework to predict the daily volatility of state-level stock returns in the United States (US), based on the weekly metrics from the corresponding broad economic conditions indexes (ECIs). In light of the importance of a common factor in explaining a large proportion of the total variability in the state-level economic conditions, we first apply a dynamic factor model with stochastic volatility (DFM-SV) to filter out the national factor from the local components of weekly state-level ECIs. We find that both the local and national factors of the ECI generally tend to affect state-level volatility negatively. Furthermore, the GARCH-MIDAS model, supplemented by these predictors, surpasses the benchmark GARCH-MIDAS model with realized volatility (GARCH-MIDAS-RV) in a majority of states. Interestingly, the local factor often assumes a more influential role overall, compared with the national factor. Moreover, when the stochastic volatilities associated with the local and national factors are integrated into the GARCH-MIDAS model, they outperform the GARCH-MIDAS-RV in over 80% of the states. Our findings have important implications for investors and policymakers.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.