{"title":"Forecasting Natural Gas Futures Prices Using Hybrid Machine Learning Models During Turbulent Market Conditions: The Case of the Russian–Ukraine Crisis","authors":"Pavan Kumar Nagula, Christos Alexakis","doi":"10.1002/for.3250","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Recently, many researchers have shown keen interest in natural gas price prediction using machine learning and hybrid architectures. Our research forecasts natural gas future prices with different hybrid machine learning models using over a hundred technical indicators. The hybrid deep cross-network model outperformed the single-stage deep cross-network regression and hybrid support vector machine models with 33% and 46% lower mean absolute error and 22% and 1.2 times better directional hit rate during 11 months of turbulent market circumstances due to the Russia–Ukraine crisis. The hybrid deep cross-network model is 14, 5, and 6 times more profitable than the hybrid support vector machine, the benchmark passive buy-and-hold strategy, and the single-stage deep cross-network regression models. The hybrid deep cross-network model is resilient during low- and high-volatility periods. Deep cross-network algorithm technical indicator interactions are more statistically significant than support vector machine polynomial kernel interactions. Energy traders and policymakers can exploit our findings.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 4","pages":"1501-1512"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3250","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, many researchers have shown keen interest in natural gas price prediction using machine learning and hybrid architectures. Our research forecasts natural gas future prices with different hybrid machine learning models using over a hundred technical indicators. The hybrid deep cross-network model outperformed the single-stage deep cross-network regression and hybrid support vector machine models with 33% and 46% lower mean absolute error and 22% and 1.2 times better directional hit rate during 11 months of turbulent market circumstances due to the Russia–Ukraine crisis. The hybrid deep cross-network model is 14, 5, and 6 times more profitable than the hybrid support vector machine, the benchmark passive buy-and-hold strategy, and the single-stage deep cross-network regression models. The hybrid deep cross-network model is resilient during low- and high-volatility periods. Deep cross-network algorithm technical indicator interactions are more statistically significant than support vector machine polynomial kernel interactions. Energy traders and policymakers can exploit our findings.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.