{"title":"ET-WOFS Metaheuristic Feature Selection Based Approach for Endometrial Cancer Classification and Detection","authors":"Ramneek Kaur Brar, Manoj Sharma","doi":"10.1002/ima.70126","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Endometrial Cancer (EC), also referred to as <i>endometrial carcinoma</i>, stands as the most common category of carcinoma of the uterus in females, ranking as the sixth most common cancer worldwide among women. This study introduces a Machine Learning-Based Efficient Computer-Aided Diagnosis (ML-CAD) state-of-the-art model aimed at assisting healthcare professionals in investigating, estimating, and accurately classifying endometrial cancer through the meticulous analysis of H&E-stained histopathological images. In the initial phase of image processing, meticulous steps are taken to eliminate noise from histopathological images. Subsequently, the application of the Vahadane stain normalization technique ensures stain normalization across histopathological images. The segmentation of stain-normalized histopathological images is executed with precision using the k-NN clustering approach, thereby enhancing the classification capabilities of the proposed ML-CAD model. Shallow features and deep features are extracted for analysis. The integration of shallow and deep features is achieved through a middle-level fusion strategy, and the SMOTE-Edited Nearest Neighbor (SMOTE-ENN) pre-processing technique is applied to address the sample imbalance issue. The identification of optimal features from a heterogeneous feature dataset is conducted meticulously using the novel Extra Tree-Whale Optimization Feature Selector (ET-WOFS). For the subsequent classification of endometrial cancer, a repertoire of classifiers, including k-NN, Random Forest, and Support Vector Machine (SVM), is harnessed. The classifier that incorporates ET-WOFS features demonstrates exceptional classification outcomes. Compared with existing models, the outcomes demonstrate that a k-NN classifier utilizing ET-WOFS features showcases remarkable outcomes with a classification accuracy of 95.78%, precision of 96.77%, an impressively low false positive rate (FPR) of 1.40%, and also a minimal false negative rate (FNR) of 4.21%. Further validation of the model's prediction and classification performance is evaluated in terms of the AUC-ROC value and other metrices. These presented assessments affirm the model's efficacy in providing accurate and reliable diagnostic support for endometrial cancer.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70126","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Endometrial Cancer (EC), also referred to as endometrial carcinoma, stands as the most common category of carcinoma of the uterus in females, ranking as the sixth most common cancer worldwide among women. This study introduces a Machine Learning-Based Efficient Computer-Aided Diagnosis (ML-CAD) state-of-the-art model aimed at assisting healthcare professionals in investigating, estimating, and accurately classifying endometrial cancer through the meticulous analysis of H&E-stained histopathological images. In the initial phase of image processing, meticulous steps are taken to eliminate noise from histopathological images. Subsequently, the application of the Vahadane stain normalization technique ensures stain normalization across histopathological images. The segmentation of stain-normalized histopathological images is executed with precision using the k-NN clustering approach, thereby enhancing the classification capabilities of the proposed ML-CAD model. Shallow features and deep features are extracted for analysis. The integration of shallow and deep features is achieved through a middle-level fusion strategy, and the SMOTE-Edited Nearest Neighbor (SMOTE-ENN) pre-processing technique is applied to address the sample imbalance issue. The identification of optimal features from a heterogeneous feature dataset is conducted meticulously using the novel Extra Tree-Whale Optimization Feature Selector (ET-WOFS). For the subsequent classification of endometrial cancer, a repertoire of classifiers, including k-NN, Random Forest, and Support Vector Machine (SVM), is harnessed. The classifier that incorporates ET-WOFS features demonstrates exceptional classification outcomes. Compared with existing models, the outcomes demonstrate that a k-NN classifier utilizing ET-WOFS features showcases remarkable outcomes with a classification accuracy of 95.78%, precision of 96.77%, an impressively low false positive rate (FPR) of 1.40%, and also a minimal false negative rate (FNR) of 4.21%. Further validation of the model's prediction and classification performance is evaluated in terms of the AUC-ROC value and other metrices. These presented assessments affirm the model's efficacy in providing accurate and reliable diagnostic support for endometrial cancer.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.