Martín O. Canullán-Pascual, Mauro Mariani, Ignacio F. Ranea-Sandoval, Milva G. Orsaria, Fridolin Weber
{"title":"Consistent Crust-Core Interpolation and Its Effect on Non-radial Neutron Star Oscillations","authors":"Martín O. Canullán-Pascual, Mauro Mariani, Ignacio F. Ranea-Sandoval, Milva G. Orsaria, Fridolin Weber","doi":"10.1002/asna.20240150","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To model the structure of neutron stars (NSs) theoretically, it is common to consider layers with different density regimes. Matching the equation of state (EoS) for the crust and core and obtaining a suitable description of these extreme conditions are crucial for understanding the properties of these compact objects. In this work, we construct 10 different NS EoSs incorporating three distinct crust models, which are connected to the core using a thermodynamically and causally consistent formalism. For cold NSs, we propose a linear relationship between pressure and energy density in a narrow region between the crust and core, effectively establishing an interpolation function in the pressure-baryonic chemical potential plane. We then compare this EoS matching method with the classical approach, which neglects causal and thermodynamic consistency. We solve the Tolman–Oppenheimer–Volkoff equation to obtain the mass-radius relationship and compare our results with observational constraints on NSs. Furthermore, we investigate the influence of the new matching formalism on non-radial oscillation frequencies and damping times. Our findings suggest that the method used to <i>glue</i> the crust and core EoS impacts NS observables, such as the radius, oscillation frequencies, and damping times of non-radial modes, which may be crucial for interpreting future gravitational wave observations from neutron star mergers or isolated pulsars. The effects are particularly noticeable for low-mass NSs, regardless of the specific EoS model chosen. In particular, we find that the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$$ {p}_1 $$</annotation>\n </semantics></math> oscillation mode exhibits significant differences in frequencies among alternative matching methods, whereas the fundamental <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n </mrow>\n <annotation>$$ f $$</annotation>\n </semantics></math>-mode remains unaffected by changes in crust models or interpolation schemes.</p>\n </div>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"346 3-4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240150","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
To model the structure of neutron stars (NSs) theoretically, it is common to consider layers with different density regimes. Matching the equation of state (EoS) for the crust and core and obtaining a suitable description of these extreme conditions are crucial for understanding the properties of these compact objects. In this work, we construct 10 different NS EoSs incorporating three distinct crust models, which are connected to the core using a thermodynamically and causally consistent formalism. For cold NSs, we propose a linear relationship between pressure and energy density in a narrow region between the crust and core, effectively establishing an interpolation function in the pressure-baryonic chemical potential plane. We then compare this EoS matching method with the classical approach, which neglects causal and thermodynamic consistency. We solve the Tolman–Oppenheimer–Volkoff equation to obtain the mass-radius relationship and compare our results with observational constraints on NSs. Furthermore, we investigate the influence of the new matching formalism on non-radial oscillation frequencies and damping times. Our findings suggest that the method used to glue the crust and core EoS impacts NS observables, such as the radius, oscillation frequencies, and damping times of non-radial modes, which may be crucial for interpreting future gravitational wave observations from neutron star mergers or isolated pulsars. The effects are particularly noticeable for low-mass NSs, regardless of the specific EoS model chosen. In particular, we find that the oscillation mode exhibits significant differences in frequencies among alternative matching methods, whereas the fundamental -mode remains unaffected by changes in crust models or interpolation schemes.
期刊介绍:
Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.